| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | oveq2d |  | 
						
							| 3 |  | oveq2 |  | 
						
							| 4 | 2 3 | eqeq12d |  | 
						
							| 5 | 4 | imbi2d |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 6 | oveq2d |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 7 8 | eqeq12d |  | 
						
							| 10 | 9 | imbi2d |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 12 13 | eqeq12d |  | 
						
							| 15 | 14 | imbi2d |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 | 16 | oveq2d |  | 
						
							| 18 |  | oveq2 |  | 
						
							| 19 | 17 18 | eqeq12d |  | 
						
							| 20 | 19 | imbi2d |  | 
						
							| 21 |  | cxp0 |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | mul01 |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 |  | cxpcl |  | 
						
							| 27 | 26 | exp0d |  | 
						
							| 28 | 22 25 27 | 3eqtr4d |  | 
						
							| 29 |  | oveq1 |  | 
						
							| 30 |  | 0cn |  | 
						
							| 31 |  | cxp0 |  | 
						
							| 32 | 30 31 | ax-mp |  | 
						
							| 33 |  | 1t1e1 |  | 
						
							| 34 | 32 33 | eqtr4i |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 |  | nn0p1nn |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 39 | nncnd |  | 
						
							| 41 | 40 | ad2antrr |  | 
						
							| 42 | 41 | mul02d |  | 
						
							| 43 | 37 42 | eqtrd |  | 
						
							| 44 | 35 43 | oveq12d |  | 
						
							| 45 | 36 | oveq1d |  | 
						
							| 46 |  | nn0cn |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 | 48 | mul02d |  | 
						
							| 50 | 45 49 | eqtrd |  | 
						
							| 51 | 35 50 | oveq12d |  | 
						
							| 52 | 51 32 | eqtrdi |  | 
						
							| 53 | 35 36 | oveq12d |  | 
						
							| 54 | 53 32 | eqtrdi |  | 
						
							| 55 | 52 54 | oveq12d |  | 
						
							| 56 | 34 44 55 | 3eqtr4a |  | 
						
							| 57 |  | simpll |  | 
						
							| 58 | 57 | ad2antrr |  | 
						
							| 59 |  | simplr |  | 
						
							| 60 | 59 47 | mulcld |  | 
						
							| 61 | 60 | ad2antrr |  | 
						
							| 62 |  | cxpcl |  | 
						
							| 63 | 58 61 62 | syl2anc |  | 
						
							| 64 | 63 | mul01d |  | 
						
							| 65 |  | simplr |  | 
						
							| 66 | 65 | oveq1d |  | 
						
							| 67 | 59 | ad2antrr |  | 
						
							| 68 |  | simpr |  | 
						
							| 69 |  | 0cxp |  | 
						
							| 70 | 67 68 69 | syl2anc |  | 
						
							| 71 | 66 70 | eqtrd |  | 
						
							| 72 | 71 | oveq2d |  | 
						
							| 73 | 65 | oveq1d |  | 
						
							| 74 | 40 | ad2antrr |  | 
						
							| 75 | 67 74 | mulcld |  | 
						
							| 76 | 39 | nnne0d |  | 
						
							| 77 | 76 | ad2antrr |  | 
						
							| 78 | 67 74 68 77 | mulne0d |  | 
						
							| 79 |  | 0cxp |  | 
						
							| 80 | 75 78 79 | syl2anc |  | 
						
							| 81 | 73 80 | eqtrd |  | 
						
							| 82 | 64 72 81 | 3eqtr4rd |  | 
						
							| 83 | 56 82 | pm2.61dane |  | 
						
							| 84 | 59 | adantr |  | 
						
							| 85 | 47 | adantr |  | 
						
							| 86 |  | 1cnd |  | 
						
							| 87 | 84 85 86 | adddid |  | 
						
							| 88 | 84 | mulridd |  | 
						
							| 89 | 88 | oveq2d |  | 
						
							| 90 | 87 89 | eqtrd |  | 
						
							| 91 | 90 | oveq2d |  | 
						
							| 92 | 57 | adantr |  | 
						
							| 93 |  | simpr |  | 
						
							| 94 | 60 | adantr |  | 
						
							| 95 |  | cxpadd |  | 
						
							| 96 | 92 93 94 84 95 | syl211anc |  | 
						
							| 97 | 91 96 | eqtrd |  | 
						
							| 98 | 83 97 | pm2.61dane |  | 
						
							| 99 |  | expp1 |  | 
						
							| 100 | 26 99 | sylan |  | 
						
							| 101 | 98 100 | eqeq12d |  | 
						
							| 102 | 29 101 | imbitrrid |  | 
						
							| 103 | 102 | expcom |  | 
						
							| 104 | 103 | a2d |  | 
						
							| 105 | 5 10 15 20 28 104 | nn0ind |  | 
						
							| 106 | 105 | com12 |  | 
						
							| 107 | 106 | 3impia |  |