Metamath Proof Explorer


Theorem cxpsqrtlem

Description: Lemma for cxpsqrt . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpsqrtlem AA0A12=AiA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 sqrtcl AA
3 2 ad2antrr AA0A12=AA
4 mulcl iAiA
5 1 3 4 sylancr AA0A12=AiA
6 imval iAiA=iAi
7 5 6 syl AA0A12=AiA=iAi
8 ine0 i0
9 divcan3 Aii0iAi=A
10 1 8 9 mp3an23 AiAi=A
11 3 10 syl AA0A12=AiAi=A
12 11 fveq2d AA0A12=AiAi=A
13 halfre 12
14 13 recni 12
15 logcl AA0logA
16 mulcl 12logA12logA
17 14 15 16 sylancr AA012logA
18 17 recld AA012logA
19 18 reefcld AA0e12logA
20 17 imcld AA012logA
21 20 recoscld AA0cos12logA
22 18 rpefcld AA0e12logA+
23 22 rpge0d AA00e12logA
24 immul2 12logA12logA=12logA
25 13 15 24 sylancr AA012logA=12logA
26 15 imcld AA0logA
27 26 recnd AA0logA
28 mulcom 12logA12logA=logA12
29 14 27 28 sylancr AA012logA=logA12
30 25 29 eqtrd AA012logA=logA12
31 logimcl AA0π<logAlogAπ
32 31 simpld AA0π<logA
33 pire π
34 33 renegcli π
35 ltle πlogAπ<logAπlogA
36 34 26 35 sylancr AA0π<logAπlogA
37 32 36 mpd AA0πlogA
38 31 simprd AA0logAπ
39 34 33 elicc2i logAππlogAπlogAlogAπ
40 26 37 38 39 syl3anbrc AA0logAππ
41 halfgt0 0<12
42 13 41 elrpii 12+
43 33 recni π
44 2cn 2
45 2ne0 20
46 divneg π220π2=π2
47 43 44 45 46 mp3an π2=π2
48 34 recni π
49 48 44 45 divreci π2=π12
50 47 49 eqtr2i π12=π2
51 43 44 45 divreci π2=π12
52 51 eqcomi π12=π2
53 34 33 42 50 52 iccdili logAππlogA12π2π2
54 40 53 syl AA0logA12π2π2
55 30 54 eqeltrd AA012logAπ2π2
56 cosq14ge0 12logAπ2π20cos12logA
57 55 56 syl AA00cos12logA
58 19 21 23 57 mulge0d AA00e12logAcos12logA
59 cxpef AA012A12=e12logA
60 14 59 mp3an3 AA0A12=e12logA
61 efeul 12logAe12logA=e12logAcos12logA+isin12logA
62 17 61 syl AA0e12logA=e12logAcos12logA+isin12logA
63 60 62 eqtrd AA0A12=e12logAcos12logA+isin12logA
64 63 fveq2d AA0A12=e12logAcos12logA+isin12logA
65 21 recnd AA0cos12logA
66 20 resincld AA0sin12logA
67 66 recnd AA0sin12logA
68 mulcl isin12logAisin12logA
69 1 67 68 sylancr AA0isin12logA
70 65 69 addcld AA0cos12logA+isin12logA
71 19 70 remul2d AA0e12logAcos12logA+isin12logA=e12logAcos12logA+isin12logA
72 21 66 crred AA0cos12logA+isin12logA=cos12logA
73 72 oveq2d AA0e12logAcos12logA+isin12logA=e12logAcos12logA
74 64 71 73 3eqtrd AA0A12=e12logAcos12logA
75 58 74 breqtrrd AA00A12
76 75 adantr AA0A12=A0A12
77 simpr AA0A12=AA12=A
78 77 fveq2d AA0A12=AA12=A
79 3 renegd AA0A12=AA=A
80 78 79 eqtrd AA0A12=AA12=A
81 76 80 breqtrd AA0A12=A0A
82 3 recld AA0A12=AA
83 82 le0neg1d AA0A12=AA00A
84 81 83 mpbird AA0A12=AA0
85 sqrtrege0 A0A
86 85 ad2antrr AA0A12=A0A
87 0re 0
88 letri3 A0A=0A00A
89 82 87 88 sylancl AA0A12=AA=0A00A
90 84 86 89 mpbir2and AA0A12=AA=0
91 7 12 90 3eqtrd AA0A12=AiA=0
92 5 91 reim0bd AA0A12=AiA