Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpsqrtlem
Next ⟩
cxpsqrt
Metamath Proof Explorer
Ascii
Unicode
Theorem
cxpsqrtlem
Description:
Lemma for
cxpsqrt
.
(Contributed by
Mario Carneiro
, 2-Aug-2014)
Ref
Expression
Assertion
cxpsqrtlem
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
i
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
ax-icn
⊢
i
∈
ℂ
2
sqrtcl
⊢
A
∈
ℂ
→
A
∈
ℂ
3
2
ad2antrr
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
A
∈
ℂ
4
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
5
1
3
4
sylancr
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
i
A
∈
ℂ
6
imval
⊢
i
A
∈
ℂ
→
ℑ
i
A
=
ℜ
i
A
i
7
5
6
syl
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℑ
i
A
=
ℜ
i
A
i
8
ine0
⊢
i
≠
0
9
divcan3
⊢
A
∈
ℂ
∧
i
∈
ℂ
∧
i
≠
0
→
i
A
i
=
A
10
1
8
9
mp3an23
⊢
A
∈
ℂ
→
i
A
i
=
A
11
3
10
syl
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
i
A
i
=
A
12
11
fveq2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
i
A
i
=
ℜ
A
13
halfre
⊢
1
2
∈
ℝ
14
13
recni
⊢
1
2
∈
ℂ
15
logcl
⊢
A
∈
ℂ
∧
A
≠
0
→
log
A
∈
ℂ
16
mulcl
⊢
1
2
∈
ℂ
∧
log
A
∈
ℂ
→
1
2
log
A
∈
ℂ
17
14
15
16
sylancr
⊢
A
∈
ℂ
∧
A
≠
0
→
1
2
log
A
∈
ℂ
18
17
recld
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
1
2
log
A
∈
ℝ
19
18
reefcld
⊢
A
∈
ℂ
∧
A
≠
0
→
e
ℜ
1
2
log
A
∈
ℝ
20
17
imcld
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
1
2
log
A
∈
ℝ
21
20
recoscld
⊢
A
∈
ℂ
∧
A
≠
0
→
cos
ℑ
1
2
log
A
∈
ℝ
22
18
rpefcld
⊢
A
∈
ℂ
∧
A
≠
0
→
e
ℜ
1
2
log
A
∈
ℝ
+
23
22
rpge0d
⊢
A
∈
ℂ
∧
A
≠
0
→
0
≤
e
ℜ
1
2
log
A
24
immul2
⊢
1
2
∈
ℝ
∧
log
A
∈
ℂ
→
ℑ
1
2
log
A
=
1
2
ℑ
log
A
25
13
15
24
sylancr
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
1
2
log
A
=
1
2
ℑ
log
A
26
15
imcld
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
log
A
∈
ℝ
27
26
recnd
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
log
A
∈
ℂ
28
mulcom
⊢
1
2
∈
ℂ
∧
ℑ
log
A
∈
ℂ
→
1
2
ℑ
log
A
=
ℑ
log
A
1
2
29
14
27
28
sylancr
⊢
A
∈
ℂ
∧
A
≠
0
→
1
2
ℑ
log
A
=
ℑ
log
A
1
2
30
25
29
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
1
2
log
A
=
ℑ
log
A
1
2
31
logimcl
π
π
⊢
A
∈
ℂ
∧
A
≠
0
→
−
π
<
ℑ
log
A
∧
ℑ
log
A
≤
π
32
31
simpld
π
⊢
A
∈
ℂ
∧
A
≠
0
→
−
π
<
ℑ
log
A
33
pire
π
⊢
π
∈
ℝ
34
33
renegcli
π
⊢
−
π
∈
ℝ
35
ltle
π
π
π
⊢
−
π
∈
ℝ
∧
ℑ
log
A
∈
ℝ
→
−
π
<
ℑ
log
A
→
−
π
≤
ℑ
log
A
36
34
26
35
sylancr
π
π
⊢
A
∈
ℂ
∧
A
≠
0
→
−
π
<
ℑ
log
A
→
−
π
≤
ℑ
log
A
37
32
36
mpd
π
⊢
A
∈
ℂ
∧
A
≠
0
→
−
π
≤
ℑ
log
A
38
31
simprd
π
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
log
A
≤
π
39
34
33
elicc2i
π
π
π
π
⊢
ℑ
log
A
∈
−
π
π
↔
ℑ
log
A
∈
ℝ
∧
−
π
≤
ℑ
log
A
∧
ℑ
log
A
≤
π
40
26
37
38
39
syl3anbrc
π
π
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
log
A
∈
−
π
π
41
halfgt0
⊢
0
<
1
2
42
13
41
elrpii
⊢
1
2
∈
ℝ
+
43
33
recni
π
⊢
π
∈
ℂ
44
2cn
⊢
2
∈
ℂ
45
2ne0
⊢
2
≠
0
46
divneg
π
π
π
⊢
π
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
−
π
2
=
−
π
2
47
43
44
45
46
mp3an
π
π
⊢
−
π
2
=
−
π
2
48
34
recni
π
⊢
−
π
∈
ℂ
49
48
44
45
divreci
π
π
⊢
−
π
2
=
−
π
1
2
50
47
49
eqtr2i
π
π
⊢
−
π
1
2
=
−
π
2
51
43
44
45
divreci
π
π
⊢
π
2
=
π
1
2
52
51
eqcomi
π
π
⊢
π
1
2
=
π
2
53
34
33
42
50
52
iccdili
π
π
π
π
⊢
ℑ
log
A
∈
−
π
π
→
ℑ
log
A
1
2
∈
−
π
2
π
2
54
40
53
syl
π
π
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
log
A
1
2
∈
−
π
2
π
2
55
30
54
eqeltrd
π
π
⊢
A
∈
ℂ
∧
A
≠
0
→
ℑ
1
2
log
A
∈
−
π
2
π
2
56
cosq14ge0
π
π
⊢
ℑ
1
2
log
A
∈
−
π
2
π
2
→
0
≤
cos
ℑ
1
2
log
A
57
55
56
syl
⊢
A
∈
ℂ
∧
A
≠
0
→
0
≤
cos
ℑ
1
2
log
A
58
19
21
23
57
mulge0d
⊢
A
∈
ℂ
∧
A
≠
0
→
0
≤
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
59
cxpef
⊢
A
∈
ℂ
∧
A
≠
0
∧
1
2
∈
ℂ
→
A
1
2
=
e
1
2
log
A
60
14
59
mp3an3
⊢
A
∈
ℂ
∧
A
≠
0
→
A
1
2
=
e
1
2
log
A
61
efeul
⊢
1
2
log
A
∈
ℂ
→
e
1
2
log
A
=
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
62
17
61
syl
⊢
A
∈
ℂ
∧
A
≠
0
→
e
1
2
log
A
=
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
63
60
62
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
→
A
1
2
=
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
64
63
fveq2d
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
A
1
2
=
ℜ
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
65
21
recnd
⊢
A
∈
ℂ
∧
A
≠
0
→
cos
ℑ
1
2
log
A
∈
ℂ
66
20
resincld
⊢
A
∈
ℂ
∧
A
≠
0
→
sin
ℑ
1
2
log
A
∈
ℝ
67
66
recnd
⊢
A
∈
ℂ
∧
A
≠
0
→
sin
ℑ
1
2
log
A
∈
ℂ
68
mulcl
⊢
i
∈
ℂ
∧
sin
ℑ
1
2
log
A
∈
ℂ
→
i
sin
ℑ
1
2
log
A
∈
ℂ
69
1
67
68
sylancr
⊢
A
∈
ℂ
∧
A
≠
0
→
i
sin
ℑ
1
2
log
A
∈
ℂ
70
65
69
addcld
⊢
A
∈
ℂ
∧
A
≠
0
→
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
∈
ℂ
71
19
70
remul2d
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
=
e
ℜ
1
2
log
A
ℜ
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
72
21
66
crred
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
=
cos
ℑ
1
2
log
A
73
72
oveq2d
⊢
A
∈
ℂ
∧
A
≠
0
→
e
ℜ
1
2
log
A
ℜ
cos
ℑ
1
2
log
A
+
i
sin
ℑ
1
2
log
A
=
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
74
64
71
73
3eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
A
1
2
=
e
ℜ
1
2
log
A
cos
ℑ
1
2
log
A
75
58
74
breqtrrd
⊢
A
∈
ℂ
∧
A
≠
0
→
0
≤
ℜ
A
1
2
76
75
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
0
≤
ℜ
A
1
2
77
simpr
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
A
1
2
=
−
A
78
77
fveq2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
1
2
=
ℜ
−
A
79
3
renegd
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
−
A
=
−
ℜ
A
80
78
79
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
1
2
=
−
ℜ
A
81
76
80
breqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
0
≤
−
ℜ
A
82
3
recld
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
∈
ℝ
83
82
le0neg1d
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
≤
0
↔
0
≤
−
ℜ
A
84
81
83
mpbird
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
≤
0
85
sqrtrege0
⊢
A
∈
ℂ
→
0
≤
ℜ
A
86
85
ad2antrr
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
0
≤
ℜ
A
87
0re
⊢
0
∈
ℝ
88
letri3
⊢
ℜ
A
∈
ℝ
∧
0
∈
ℝ
→
ℜ
A
=
0
↔
ℜ
A
≤
0
∧
0
≤
ℜ
A
89
82
87
88
sylancl
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
=
0
↔
ℜ
A
≤
0
∧
0
≤
ℜ
A
90
84
86
89
mpbir2and
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℜ
A
=
0
91
7
12
90
3eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
ℑ
i
A
=
0
92
5
91
reim0bd
⊢
A
∈
ℂ
∧
A
≠
0
∧
A
1
2
=
−
A
→
i
A
∈
ℝ