Metamath Proof Explorer


Theorem dchrpt

Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G = DChr N
dchrpt.z Z = /N
dchrpt.d D = Base G
dchrpt.b B = Base Z
dchrpt.1 1 ˙ = 1 Z
dchrpt.n φ N
dchrpt.n1 φ A 1 ˙
dchrpt.a φ A B
Assertion dchrpt φ x D x A 1

Proof

Step Hyp Ref Expression
1 dchrpt.g G = DChr N
2 dchrpt.z Z = /N
3 dchrpt.d D = Base G
4 dchrpt.b B = Base Z
5 dchrpt.1 1 ˙ = 1 Z
6 dchrpt.n φ N
7 dchrpt.n1 φ A 1 ˙
8 dchrpt.a φ A B
9 6 ad3antrrr φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z N
10 7 ad3antrrr φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z A 1 ˙
11 eqid Unit Z = Unit Z
12 eqid mulGrp Z 𝑠 Unit Z = mulGrp Z 𝑠 Unit Z
13 eqid mulGrp Z 𝑠 Unit Z = mulGrp Z 𝑠 Unit Z
14 oveq1 n = b n mulGrp Z 𝑠 Unit Z w k = b mulGrp Z 𝑠 Unit Z w k
15 14 cbvmptv n n mulGrp Z 𝑠 Unit Z w k = b b mulGrp Z 𝑠 Unit Z w k
16 fveq2 k = a w k = w a
17 16 oveq2d k = a b mulGrp Z 𝑠 Unit Z w k = b mulGrp Z 𝑠 Unit Z w a
18 17 mpteq2dv k = a b b mulGrp Z 𝑠 Unit Z w k = b b mulGrp Z 𝑠 Unit Z w a
19 15 18 eqtrid k = a n n mulGrp Z 𝑠 Unit Z w k = b b mulGrp Z 𝑠 Unit Z w a
20 19 rneqd k = a ran n n mulGrp Z 𝑠 Unit Z w k = ran b b mulGrp Z 𝑠 Unit Z w a
21 20 cbvmptv k dom w ran n n mulGrp Z 𝑠 Unit Z w k = a dom w ran b b mulGrp Z 𝑠 Unit Z w a
22 simpllr φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z A Unit Z
23 simplr φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z w Word Unit Z
24 simprl φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k
25 simprr φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z
26 1 2 3 4 5 9 10 11 12 13 21 22 23 24 25 dchrptlem3 φ A Unit Z w Word Unit Z mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z x D x A 1
27 26 3adantr1 φ A Unit Z w Word Unit Z k dom w ran n n mulGrp Z 𝑠 Unit Z w k : dom w u SubGrp mulGrp Z 𝑠 Unit Z | mulGrp Z 𝑠 Unit Z 𝑠 u CycGrp ran pGrp mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z x D x A 1
28 11 12 unitgrpbas Unit Z = Base mulGrp Z 𝑠 Unit Z
29 eqid u SubGrp mulGrp Z 𝑠 Unit Z | mulGrp Z 𝑠 Unit Z 𝑠 u CycGrp ran pGrp = u SubGrp mulGrp Z 𝑠 Unit Z | mulGrp Z 𝑠 Unit Z 𝑠 u CycGrp ran pGrp
30 6 nnnn0d φ N 0
31 2 zncrng N 0 Z CRing
32 11 12 unitabl Z CRing mulGrp Z 𝑠 Unit Z Abel
33 30 31 32 3syl φ mulGrp Z 𝑠 Unit Z Abel
34 33 adantr φ A Unit Z mulGrp Z 𝑠 Unit Z Abel
35 2 4 znfi N B Fin
36 6 35 syl φ B Fin
37 4 11 unitss Unit Z B
38 ssfi B Fin Unit Z B Unit Z Fin
39 36 37 38 sylancl φ Unit Z Fin
40 39 adantr φ A Unit Z Unit Z Fin
41 eqid k dom w ran n n mulGrp Z 𝑠 Unit Z w k = k dom w ran n n mulGrp Z 𝑠 Unit Z w k
42 28 29 34 40 13 41 ablfac2 φ A Unit Z w Word Unit Z k dom w ran n n mulGrp Z 𝑠 Unit Z w k : dom w u SubGrp mulGrp Z 𝑠 Unit Z | mulGrp Z 𝑠 Unit Z 𝑠 u CycGrp ran pGrp mulGrp Z 𝑠 Unit Z dom DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k mulGrp Z 𝑠 Unit Z DProd k dom w ran n n mulGrp Z 𝑠 Unit Z w k = Unit Z
43 27 42 r19.29a φ A Unit Z x D x A 1
44 1 dchrabl N G Abel
45 ablgrp G Abel G Grp
46 eqid 0 G = 0 G
47 3 46 grpidcl G Grp 0 G D
48 6 44 45 47 4syl φ 0 G D
49 0ne1 0 1
50 1 2 3 4 11 48 8 dchrn0 φ 0 G A 0 A Unit Z
51 50 necon1bbid φ ¬ A Unit Z 0 G A = 0
52 51 biimpa φ ¬ A Unit Z 0 G A = 0
53 52 neeq1d φ ¬ A Unit Z 0 G A 1 0 1
54 49 53 mpbiri φ ¬ A Unit Z 0 G A 1
55 fveq1 x = 0 G x A = 0 G A
56 55 neeq1d x = 0 G x A 1 0 G A 1
57 56 rspcev 0 G D 0 G A 1 x D x A 1
58 48 54 57 syl2an2r φ ¬ A Unit Z x D x A 1
59 43 58 pm2.61dan φ x D x A 1