Step |
Hyp |
Ref |
Expression |
1 |
|
dchrpt.g |
|
2 |
|
dchrpt.z |
|
3 |
|
dchrpt.d |
|
4 |
|
dchrpt.b |
|
5 |
|
dchrpt.1 |
|
6 |
|
dchrpt.n |
|
7 |
|
dchrpt.n1 |
|
8 |
|
dchrpt.a |
|
9 |
6
|
ad3antrrr |
|
10 |
7
|
ad3antrrr |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
oveq1 |
|
15 |
14
|
cbvmptv |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq2d |
|
18 |
17
|
mpteq2dv |
|
19 |
15 18
|
eqtrid |
|
20 |
19
|
rneqd |
|
21 |
20
|
cbvmptv |
|
22 |
|
simpllr |
|
23 |
|
simplr |
|
24 |
|
simprl |
|
25 |
|
simprr |
|
26 |
1 2 3 4 5 9 10 11 12 13 21 22 23 24 25
|
dchrptlem3 |
|
27 |
26
|
3adantr1 |
|
28 |
11 12
|
unitgrpbas |
|
29 |
|
eqid |
|
30 |
6
|
nnnn0d |
|
31 |
2
|
zncrng |
|
32 |
11 12
|
unitabl |
|
33 |
30 31 32
|
3syl |
|
34 |
33
|
adantr |
|
35 |
2 4
|
znfi |
|
36 |
6 35
|
syl |
|
37 |
4 11
|
unitss |
|
38 |
|
ssfi |
|
39 |
36 37 38
|
sylancl |
|
40 |
39
|
adantr |
|
41 |
|
eqid |
|
42 |
28 29 34 40 13 41
|
ablfac2 |
|
43 |
27 42
|
r19.29a |
|
44 |
1
|
dchrabl |
|
45 |
|
ablgrp |
|
46 |
|
eqid |
|
47 |
3 46
|
grpidcl |
|
48 |
6 44 45 47
|
4syl |
|
49 |
|
0ne1 |
|
50 |
1 2 3 4 11 48 8
|
dchrn0 |
|
51 |
50
|
necon1bbid |
|
52 |
51
|
biimpa |
|
53 |
52
|
neeq1d |
|
54 |
49 53
|
mpbiri |
|
55 |
|
fveq1 |
|
56 |
55
|
neeq1d |
|
57 |
56
|
rspcev |
|
58 |
48 54 57
|
syl2an2r |
|
59 |
43 58
|
pm2.61dan |
|