Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dchrpt.g | |
|
dchrpt.z | |
||
dchrpt.d | |
||
dchrpt.b | |
||
dchrpt.1 | |
||
dchrpt.n | |
||
dchrpt.n1 | |
||
dchrpt.a | |
||
Assertion | dchrpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrpt.g | |
|
2 | dchrpt.z | |
|
3 | dchrpt.d | |
|
4 | dchrpt.b | |
|
5 | dchrpt.1 | |
|
6 | dchrpt.n | |
|
7 | dchrpt.n1 | |
|
8 | dchrpt.a | |
|
9 | 6 | ad3antrrr | |
10 | 7 | ad3antrrr | |
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | oveq1 | |
|
15 | 14 | cbvmptv | |
16 | fveq2 | |
|
17 | 16 | oveq2d | |
18 | 17 | mpteq2dv | |
19 | 15 18 | eqtrid | |
20 | 19 | rneqd | |
21 | 20 | cbvmptv | |
22 | simpllr | |
|
23 | simplr | |
|
24 | simprl | |
|
25 | simprr | |
|
26 | 1 2 3 4 5 9 10 11 12 13 21 22 23 24 25 | dchrptlem3 | |
27 | 26 | 3adantr1 | |
28 | 11 12 | unitgrpbas | |
29 | eqid | |
|
30 | 6 | nnnn0d | |
31 | 2 | zncrng | |
32 | 11 12 | unitabl | |
33 | 30 31 32 | 3syl | |
34 | 33 | adantr | |
35 | 2 4 | znfi | |
36 | 6 35 | syl | |
37 | 4 11 | unitss | |
38 | ssfi | |
|
39 | 36 37 38 | sylancl | |
40 | 39 | adantr | |
41 | eqid | |
|
42 | 28 29 34 40 13 41 | ablfac2 | |
43 | 27 42 | r19.29a | |
44 | 1 | dchrabl | |
45 | ablgrp | |
|
46 | eqid | |
|
47 | 3 46 | grpidcl | |
48 | 6 44 45 47 | 4syl | |
49 | 0ne1 | |
|
50 | 1 2 3 4 11 48 8 | dchrn0 | |
51 | 50 | necon1bbid | |
52 | 51 | biimpa | |
53 | 52 | neeq1d | |
54 | 49 53 | mpbiri | |
55 | fveq1 | |
|
56 | 55 | neeq1d | |
57 | 56 | rspcev | |
58 | 48 54 57 | syl2an2r | |
59 | 43 58 | pm2.61dan | |