Metamath Proof Explorer


Theorem deg1mul3le

Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1mul3le.d D=deg1R
deg1mul3le.p P=Poly1R
deg1mul3le.k K=BaseR
deg1mul3le.b B=BaseP
deg1mul3le.t ·˙=P
deg1mul3le.a A=algScP
Assertion deg1mul3le RRingFKGBDAF·˙GDG

Proof

Step Hyp Ref Expression
1 deg1mul3le.d D=deg1R
2 deg1mul3le.p P=Poly1R
3 deg1mul3le.k K=BaseR
4 deg1mul3le.b B=BaseP
5 deg1mul3le.t ·˙=P
6 deg1mul3le.a A=algScP
7 2 ply1ring RRingPRing
8 7 3ad2ant1 RRingFKGBPRing
9 2 6 3 4 ply1sclf RRingA:KB
10 9 3ad2ant1 RRingFKGBA:KB
11 simp2 RRingFKGBFK
12 10 11 ffvelcdmd RRingFKGBAFB
13 simp3 RRingFKGBGB
14 4 5 ringcl PRingAFBGBAF·˙GB
15 8 12 13 14 syl3anc RRingFKGBAF·˙GB
16 eqid coe1AF·˙G=coe1AF·˙G
17 16 4 2 3 coe1f AF·˙GBcoe1AF·˙G:0K
18 15 17 syl RRingFKGBcoe1AF·˙G:0K
19 eldifi a0supp0Rcoe1Ga0
20 simpl1 RRingFKGBa0RRing
21 simpl2 RRingFKGBa0FK
22 simpl3 RRingFKGBa0GB
23 simpr RRingFKGBa0a0
24 eqid R=R
25 2 4 3 6 5 24 coe1sclmulfv RRingFKGBa0coe1AF·˙Ga=FRcoe1Ga
26 20 21 22 23 25 syl121anc RRingFKGBa0coe1AF·˙Ga=FRcoe1Ga
27 19 26 sylan2 RRingFKGBa0supp0Rcoe1Gcoe1AF·˙Ga=FRcoe1Ga
28 eqid coe1G=coe1G
29 28 4 2 3 coe1f GBcoe1G:0K
30 29 3ad2ant3 RRingFKGBcoe1G:0K
31 ssidd RRingFKGBcoe1Gsupp0Rcoe1Gsupp0R
32 nn0ex 0V
33 32 a1i RRingFKGB0V
34 fvexd RRingFKGB0RV
35 30 31 33 34 suppssr RRingFKGBa0supp0Rcoe1Gcoe1Ga=0R
36 35 oveq2d RRingFKGBa0supp0Rcoe1GFRcoe1Ga=FR0R
37 eqid 0R=0R
38 3 24 37 ringrz RRingFKFR0R=0R
39 38 3adant3 RRingFKGBFR0R=0R
40 39 adantr RRingFKGBa0supp0Rcoe1GFR0R=0R
41 27 36 40 3eqtrd RRingFKGBa0supp0Rcoe1Gcoe1AF·˙Ga=0R
42 18 41 suppss RRingFKGBcoe1AF·˙Gsupp0Rcoe1Gsupp0R
43 suppssdm coe1Gsupp0Rdomcoe1G
44 43 30 fssdm RRingFKGBcoe1Gsupp0R0
45 nn0ssre 0
46 ressxr *
47 45 46 sstri 0*
48 44 47 sstrdi RRingFKGBcoe1Gsupp0R*
49 supxrss coe1AF·˙Gsupp0Rcoe1Gsupp0Rcoe1Gsupp0R*supcoe1AF·˙Gsupp0R*<supcoe1Gsupp0R*<
50 42 48 49 syl2anc RRingFKGBsupcoe1AF·˙Gsupp0R*<supcoe1Gsupp0R*<
51 1 2 4 37 16 deg1val AF·˙GBDAF·˙G=supcoe1AF·˙Gsupp0R*<
52 15 51 syl RRingFKGBDAF·˙G=supcoe1AF·˙Gsupp0R*<
53 1 2 4 37 28 deg1val GBDG=supcoe1Gsupp0R*<
54 53 3ad2ant3 RRingFKGBDG=supcoe1Gsupp0R*<
55 50 52 54 3brtr4d RRingFKGBDAF·˙GDG