Metamath Proof Explorer


Theorem dfon2lem4

Description: Lemma for dfon2 . If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Hypotheses dfon2lem4.1 AV
dfon2lem4.2 BV
Assertion dfon2lem4 xxATrxxAyyBTryyBABBA

Proof

Step Hyp Ref Expression
1 dfon2lem4.1 AV
2 dfon2lem4.2 BV
3 inss1 ABA
4 3 sseli ABABABA
5 dfon2lem3 AVxxATrxxATrAzA¬zz
6 1 5 ax-mp xxATrxxATrAzA¬zz
7 6 simprd xxATrxxAzA¬zz
8 eleq1 z=ABzzABz
9 eleq2 z=ABABzABAB
10 8 9 bitrd z=ABzzABAB
11 10 notbid z=AB¬zz¬ABAB
12 11 rspccv zA¬zzABA¬ABAB
13 7 12 syl xxATrxxAABA¬ABAB
14 13 adantr xxATrxxAyyBTryyBABA¬ABAB
15 4 14 syl5 xxATrxxAyyBTryyBABAB¬ABAB
16 15 pm2.01d xxATrxxAyyBTryyB¬ABAB
17 elin ABABABAABB
18 16 17 sylnib xxATrxxAyyBTryyB¬ABAABB
19 6 simpld xxATrxxATrA
20 dfon2lem3 BVyyBTryyBTrBzB¬zz
21 2 20 ax-mp yyBTryyBTrBzB¬zz
22 21 simpld yyBTryyBTrB
23 trin TrATrBTrAB
24 19 22 23 syl2an xxATrxxAyyBTryyBTrAB
25 1 inex1 ABV
26 psseq1 x=ABxAABA
27 treq x=ABTrxTrAB
28 26 27 anbi12d x=ABxATrxABATrAB
29 eleq1 x=ABxAABA
30 28 29 imbi12d x=ABxATrxxAABATrABABA
31 25 30 spcv xxATrxxAABATrABABA
32 31 adantr xxATrxxAyyBTryyBABATrABABA
33 24 32 mpan2d xxATrxxAyyBTryyBABAABA
34 psseq1 y=AByBABB
35 treq y=ABTryTrAB
36 34 35 anbi12d y=AByBTryABBTrAB
37 eleq1 y=AByBABB
38 36 37 imbi12d y=AByBTryyBABBTrABABB
39 25 38 spcv yyBTryyBABBTrABABB
40 39 adantl xxATrxxAyyBTryyBABBTrABABB
41 24 40 mpan2d xxATrxxAyyBTryyBABBABB
42 33 41 anim12d xxATrxxAyyBTryyBABAABBABAABB
43 18 42 mtod xxATrxxAyyBTryyB¬ABAABB
44 ianor ¬ABAABB¬ABA¬ABB
45 43 44 sylib xxATrxxAyyBTryyB¬ABA¬ABB
46 sspss ABAABAAB=A
47 3 46 mpbi ABAAB=A
48 inss2 ABB
49 sspss ABBABBAB=B
50 48 49 mpbi ABBAB=B
51 orel1 ¬ABAABAAB=AAB=A
52 orc AB=AAB=AAB=B
53 51 52 syl6 ¬ABAABAAB=AAB=AAB=B
54 orel1 ¬ABBABBAB=BAB=B
55 olc AB=BAB=AAB=B
56 54 55 syl6 ¬ABBABBAB=BAB=AAB=B
57 53 56 jaoa ¬ABA¬ABBABAAB=AABBAB=BAB=AAB=B
58 47 50 57 mp2ani ¬ABA¬ABBAB=AAB=B
59 45 58 syl xxATrxxAyyBTryyBAB=AAB=B
60 df-ss ABAB=A
61 sseqin2 BAAB=B
62 60 61 orbi12i ABBAAB=AAB=B
63 59 62 sylibr xxATrxxAyyBTryyBABBA