Description: Lemma for dfon2 . If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfon2lem4.1 | |
|
dfon2lem4.2 | |
||
Assertion | dfon2lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfon2lem4.1 | |
|
2 | dfon2lem4.2 | |
|
3 | inss1 | |
|
4 | 3 | sseli | |
5 | dfon2lem3 | |
|
6 | 1 5 | ax-mp | |
7 | 6 | simprd | |
8 | eleq1 | |
|
9 | eleq2 | |
|
10 | 8 9 | bitrd | |
11 | 10 | notbid | |
12 | 11 | rspccv | |
13 | 7 12 | syl | |
14 | 13 | adantr | |
15 | 4 14 | syl5 | |
16 | 15 | pm2.01d | |
17 | elin | |
|
18 | 16 17 | sylnib | |
19 | 6 | simpld | |
20 | dfon2lem3 | |
|
21 | 2 20 | ax-mp | |
22 | 21 | simpld | |
23 | trin | |
|
24 | 19 22 23 | syl2an | |
25 | 1 | inex1 | |
26 | psseq1 | |
|
27 | treq | |
|
28 | 26 27 | anbi12d | |
29 | eleq1 | |
|
30 | 28 29 | imbi12d | |
31 | 25 30 | spcv | |
32 | 31 | adantr | |
33 | 24 32 | mpan2d | |
34 | psseq1 | |
|
35 | treq | |
|
36 | 34 35 | anbi12d | |
37 | eleq1 | |
|
38 | 36 37 | imbi12d | |
39 | 25 38 | spcv | |
40 | 39 | adantl | |
41 | 24 40 | mpan2d | |
42 | 33 41 | anim12d | |
43 | 18 42 | mtod | |
44 | ianor | |
|
45 | 43 44 | sylib | |
46 | sspss | |
|
47 | 3 46 | mpbi | |
48 | inss2 | |
|
49 | sspss | |
|
50 | 48 49 | mpbi | |
51 | orel1 | |
|
52 | orc | |
|
53 | 51 52 | syl6 | |
54 | orel1 | |
|
55 | olc | |
|
56 | 54 55 | syl6 | |
57 | 53 56 | jaoa | |
58 | 47 50 57 | mp2ani | |
59 | 45 58 | syl | |
60 | df-ss | |
|
61 | sseqin2 | |
|
62 | 60 61 | orbi12i | |
63 | 59 62 | sylibr | |