Description: Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rcl | |
|
2 | rabab | |
|
3 | 2 | eqcomi | |
4 | 3 | inteqi | |
5 | 4 | a1i | |
6 | vex | |
|
7 | 6 | dmex | |
8 | 6 | rnex | |
9 | 7 8 | unex | |
10 | resiexg | |
|
11 | 9 10 | ax-mp | |
12 | 11 6 | unex | |
13 | 12 | a1i | |
14 | ssun2 | |
|
15 | dmun | |
|
16 | dmresi | |
|
17 | 16 | uneq1i | |
18 | un23 | |
|
19 | unidm | |
|
20 | 19 | uneq1i | |
21 | 18 20 | eqtri | |
22 | 15 17 21 | 3eqtri | |
23 | rnun | |
|
24 | rnresi | |
|
25 | 24 | uneq1i | |
26 | unass | |
|
27 | unidm | |
|
28 | 27 | uneq2i | |
29 | 26 28 | eqtri | |
30 | 23 25 29 | 3eqtri | |
31 | 22 30 | uneq12i | |
32 | unidm | |
|
33 | 31 32 | eqtri | |
34 | 33 | reseq2i | |
35 | ssun1 | |
|
36 | 34 35 | eqsstri | |
37 | 14 36 | pm3.2i | |
38 | dmeq | |
|
39 | rneq | |
|
40 | 38 39 | uneq12d | |
41 | 40 | reseq2d | |
42 | id | |
|
43 | 41 42 | sseq12d | |
44 | 43 | cleq2lem | |
45 | 44 | intminss | |
46 | 13 37 45 | sylancl | |
47 | 5 46 | eqsstrd | |
48 | dmss | |
|
49 | rnss | |
|
50 | unss12 | |
|
51 | 48 49 50 | syl2anc | |
52 | dfss | |
|
53 | 51 52 | sylib | |
54 | incom | |
|
55 | 53 54 | eqtrdi | |
56 | 55 | reseq2d | |
57 | resres | |
|
58 | 56 57 | eqtr4di | |
59 | resss | |
|
60 | 59 | a1i | |
61 | 58 60 | eqsstrd | |
62 | 61 | adantr | |
63 | simpr | |
|
64 | 62 63 | sstrd | |
65 | simpl | |
|
66 | 64 65 | unssd | |
67 | 66 | ax-gen | |
68 | 67 | a1i | |
69 | ssintab | |
|
70 | 68 69 | sylibr | |
71 | 47 70 | eqssd | |
72 | 71 | mpteq2ia | |
73 | 1 72 | eqtri | |