| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsalgen2.1 |
|
| 2 |
|
id |
|
| 3 |
2
|
eqcomd |
|
| 4 |
3
|
adantl |
|
| 5 |
|
salgencl |
|
| 6 |
1 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
4 7
|
eqeltrd |
|
| 9 |
|
unieq |
|
| 10 |
9
|
adantl |
|
| 11 |
1
|
adantr |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
11 12 13
|
salgenuni |
|
| 15 |
10 14
|
eqtr3d |
|
| 16 |
12
|
sssalgen |
|
| 17 |
11 16
|
syl |
|
| 18 |
|
simpr |
|
| 19 |
17 18
|
sseqtrd |
|
| 20 |
8 15 19
|
3jca |
|
| 21 |
4
|
ad2antrr |
|
| 22 |
21
|
adantrl |
|
| 23 |
11
|
ad2antrr |
|
| 24 |
23
|
adantrl |
|
| 25 |
|
simplr |
|
| 26 |
25
|
adantrl |
|
| 27 |
|
simpr |
|
| 28 |
27
|
adantrl |
|
| 29 |
|
simprl |
|
| 30 |
24 12 26 28 29
|
salgenss |
|
| 31 |
22 30
|
eqsstrd |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
20 33
|
jca |
|
| 35 |
34
|
ex |
|
| 36 |
1
|
adantr |
|
| 37 |
|
simprl1 |
|
| 38 |
|
simprl2 |
|
| 39 |
|
simprl3 |
|
| 40 |
|
unieq |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
|
sseq2 |
|
| 43 |
41 42
|
anbi12d |
|
| 44 |
|
sseq2 |
|
| 45 |
43 44
|
imbi12d |
|
| 46 |
45
|
cbvralvw |
|
| 47 |
46
|
biimpi |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
48 49
|
jca |
|
| 51 |
50
|
3ad2antr1 |
|
| 52 |
|
3simpc |
|
| 53 |
52
|
adantl |
|
| 54 |
|
rspa |
|
| 55 |
51 53 54
|
sylc |
|
| 56 |
55
|
adantll |
|
| 57 |
56
|
adantll |
|
| 58 |
36 37 38 39 57
|
issalgend |
|
| 59 |
58
|
ex |
|
| 60 |
35 59
|
impbid |
|