Metamath Proof Explorer


Theorem dib1dim2

Description: Two expressions for a 1-dimensional subspace of vector space H (when F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses dib1dim2.b B=BaseK
dib1dim2.h H=LHypK
dib1dim2.t T=LTrnKW
dib1dim2.r R=trLKW
dib1dim2.o O=hTIB
dib1dim2.u U=DVecHKW
dib1dim2.i I=DIsoBKW
dib1dim2.n N=LSpanU
Assertion dib1dim2 KHLWHFTIRF=NFO

Proof

Step Hyp Ref Expression
1 dib1dim2.b B=BaseK
2 dib1dim2.h H=LHypK
3 dib1dim2.t T=LTrnKW
4 dib1dim2.r R=trLKW
5 dib1dim2.o O=hTIB
6 dib1dim2.u U=DVecHKW
7 dib1dim2.i I=DIsoBKW
8 dib1dim2.n N=LSpanU
9 df-rab uT×TEndoKW|vTEndoKWu=vFO=u|uT×TEndoKWvTEndoKWu=vFO
10 eqid TEndoKW=TEndoKW
11 1 2 3 4 10 5 7 dib1dim KHLWHFTIRF=uT×TEndoKW|vTEndoKWu=vFO
12 eqid ScalarU=ScalarU
13 eqid BaseScalarU=BaseScalarU
14 2 10 6 12 13 dvhbase KHLWHBaseScalarU=TEndoKW
15 14 adantr KHLWHFTBaseScalarU=TEndoKW
16 15 rexeqdv KHLWHFTvBaseScalarUu=vUFOvTEndoKWu=vUFO
17 simpll KHLWHFTvTEndoKWKHLWH
18 simpr KHLWHFTvTEndoKWvTEndoKW
19 simplr KHLWHFTvTEndoKWFT
20 1 2 3 10 5 tendo0cl KHLWHOTEndoKW
21 20 ad2antrr KHLWHFTvTEndoKWOTEndoKW
22 eqid U=U
23 2 3 10 6 22 dvhopvsca KHLWHvTEndoKWFTOTEndoKWvUFO=vFvO
24 17 18 19 21 23 syl13anc KHLWHFTvTEndoKWvUFO=vFvO
25 1 2 3 10 5 tendo0mulr KHLWHvTEndoKWvO=O
26 25 adantlr KHLWHFTvTEndoKWvO=O
27 26 opeq2d KHLWHFTvTEndoKWvFvO=vFO
28 24 27 eqtrd KHLWHFTvTEndoKWvUFO=vFO
29 28 eqeq2d KHLWHFTvTEndoKWu=vUFOu=vFO
30 29 rexbidva KHLWHFTvTEndoKWu=vUFOvTEndoKWu=vFO
31 2 3 10 tendocl KHLWHvTEndoKWFTvFT
32 31 3expa KHLWHvTEndoKWFTvFT
33 32 an32s KHLWHFTvTEndoKWvFT
34 opelxpi vFTOTEndoKWvFOT×TEndoKW
35 33 21 34 syl2anc KHLWHFTvTEndoKWvFOT×TEndoKW
36 eleq1a vFOT×TEndoKWu=vFOuT×TEndoKW
37 35 36 syl KHLWHFTvTEndoKWu=vFOuT×TEndoKW
38 37 rexlimdva KHLWHFTvTEndoKWu=vFOuT×TEndoKW
39 38 pm4.71rd KHLWHFTvTEndoKWu=vFOuT×TEndoKWvTEndoKWu=vFO
40 16 30 39 3bitrd KHLWHFTvBaseScalarUu=vUFOuT×TEndoKWvTEndoKWu=vFO
41 40 abbidv KHLWHFTu|vBaseScalarUu=vUFO=u|uT×TEndoKWvTEndoKWu=vFO
42 9 11 41 3eqtr4a KHLWHFTIRF=u|vBaseScalarUu=vUFO
43 simpl KHLWHFTKHLWH
44 2 6 43 dvhlmod KHLWHFTULMod
45 simpr KHLWHFTFT
46 20 adantr KHLWHFTOTEndoKW
47 eqid BaseU=BaseU
48 2 3 10 6 47 dvhelvbasei KHLWHFTOTEndoKWFOBaseU
49 43 45 46 48 syl12anc KHLWHFTFOBaseU
50 12 13 47 22 8 lspsn ULModFOBaseUNFO=u|vBaseScalarUu=vUFO
51 44 49 50 syl2anc KHLWHFTNFO=u|vBaseScalarUu=vUFO
52 42 51 eqtr4d KHLWHFTIRF=NFO