Description: Two expressions for a 1-dimensional subspace of vector space H (when F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dib1dim2.b | |
|
dib1dim2.h | |
||
dib1dim2.t | |
||
dib1dim2.r | |
||
dib1dim2.o | |
||
dib1dim2.u | |
||
dib1dim2.i | |
||
dib1dim2.n | |
||
Assertion | dib1dim2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dib1dim2.b | |
|
2 | dib1dim2.h | |
|
3 | dib1dim2.t | |
|
4 | dib1dim2.r | |
|
5 | dib1dim2.o | |
|
6 | dib1dim2.u | |
|
7 | dib1dim2.i | |
|
8 | dib1dim2.n | |
|
9 | df-rab | |
|
10 | eqid | |
|
11 | 1 2 3 4 10 5 7 | dib1dim | |
12 | eqid | |
|
13 | eqid | |
|
14 | 2 10 6 12 13 | dvhbase | |
15 | 14 | adantr | |
16 | 15 | rexeqdv | |
17 | simpll | |
|
18 | simpr | |
|
19 | simplr | |
|
20 | 1 2 3 10 5 | tendo0cl | |
21 | 20 | ad2antrr | |
22 | eqid | |
|
23 | 2 3 10 6 22 | dvhopvsca | |
24 | 17 18 19 21 23 | syl13anc | |
25 | 1 2 3 10 5 | tendo0mulr | |
26 | 25 | adantlr | |
27 | 26 | opeq2d | |
28 | 24 27 | eqtrd | |
29 | 28 | eqeq2d | |
30 | 29 | rexbidva | |
31 | 2 3 10 | tendocl | |
32 | 31 | 3expa | |
33 | 32 | an32s | |
34 | opelxpi | |
|
35 | 33 21 34 | syl2anc | |
36 | eleq1a | |
|
37 | 35 36 | syl | |
38 | 37 | rexlimdva | |
39 | 38 | pm4.71rd | |
40 | 16 30 39 | 3bitrd | |
41 | 40 | abbidv | |
42 | 9 11 41 | 3eqtr4a | |
43 | simpl | |
|
44 | 2 6 43 | dvhlmod | |
45 | simpr | |
|
46 | 20 | adantr | |
47 | eqid | |
|
48 | 2 3 10 6 47 | dvhelvbasei | |
49 | 43 45 46 48 | syl12anc | |
50 | 12 13 47 22 8 | lspsn | |
51 | 44 49 50 | syl2anc | |
52 | 42 51 | eqtr4d | |