Metamath Proof Explorer


Theorem dihjat

Description: Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihjat.h H=LHypK
dihjat.j ˙=joinK
dihjat.a A=AtomsK
dihjat.u U=DVecHKW
dihjat.s ˙=LSSumU
dihjat.i I=DIsoHKW
dihjat.k φKHLWH
dihjat.p φPA
dihjat.q φQA
Assertion dihjat φIP˙Q=IP˙IQ

Proof

Step Hyp Ref Expression
1 dihjat.h H=LHypK
2 dihjat.j ˙=joinK
3 dihjat.a A=AtomsK
4 dihjat.u U=DVecHKW
5 dihjat.s ˙=LSSumU
6 dihjat.i I=DIsoHKW
7 dihjat.k φKHLWH
8 dihjat.p φPA
9 dihjat.q φQA
10 eqid K=K
11 7 adantr φPKWQKWKHLWH
12 8 adantr φPKWQKWPA
13 simprl φPKWQKWPKW
14 12 13 jca φPKWQKWPAPKW
15 9 adantr φPKWQKWQA
16 simprr φPKWQKWQKW
17 15 16 jca φPKWQKWQAQKW
18 10 1 2 3 4 5 6 11 14 17 dihjatb φPKWQKWIP˙Q=IP˙IQ
19 eqid BaseK=BaseK
20 7 adantr φPKW¬QKWKHLWH
21 19 3 atbase PAPBaseK
22 8 21 syl φPBaseK
23 22 adantr φPKW¬QKWPBaseK
24 simprl φPKW¬QKWPKW
25 23 24 jca φPKW¬QKWPBaseKPKW
26 9 adantr φPKW¬QKWQA
27 simprr φPKW¬QKW¬QKW
28 26 27 jca φPKW¬QKWQA¬QKW
29 19 10 1 2 3 4 5 6 20 25 28 dihjatc φPKW¬QKWIP˙Q=IP˙IQ
30 7 adantr φ¬PKWQKWKHLWH
31 19 3 atbase QAQBaseK
32 9 31 syl φQBaseK
33 32 adantr φ¬PKWQKWQBaseK
34 simprr φ¬PKWQKWQKW
35 33 34 jca φ¬PKWQKWQBaseKQKW
36 8 adantr φ¬PKWQKWPA
37 simprl φ¬PKWQKW¬PKW
38 36 37 jca φ¬PKWQKWPA¬PKW
39 19 10 1 2 3 4 5 6 30 35 38 dihjatc φ¬PKWQKWIQ˙P=IQ˙IP
40 7 simpld φKHL
41 2 3 hlatjcom KHLPAQAP˙Q=Q˙P
42 40 8 9 41 syl3anc φP˙Q=Q˙P
43 42 fveq2d φIP˙Q=IQ˙P
44 43 adantr φ¬PKWQKWIP˙Q=IQ˙P
45 1 4 7 dvhlmod φULMod
46 lmodabl ULModUAbel
47 45 46 syl φUAbel
48 eqid LSubSpU=LSubSpU
49 48 lsssssubg ULModLSubSpUSubGrpU
50 45 49 syl φLSubSpUSubGrpU
51 19 1 6 4 48 dihlss KHLWHPBaseKIPLSubSpU
52 7 22 51 syl2anc φIPLSubSpU
53 50 52 sseldd φIPSubGrpU
54 19 1 6 4 48 dihlss KHLWHQBaseKIQLSubSpU
55 7 32 54 syl2anc φIQLSubSpU
56 50 55 sseldd φIQSubGrpU
57 5 lsmcom UAbelIPSubGrpUIQSubGrpUIP˙IQ=IQ˙IP
58 47 53 56 57 syl3anc φIP˙IQ=IQ˙IP
59 58 adantr φ¬PKWQKWIP˙IQ=IQ˙IP
60 39 44 59 3eqtr4d φ¬PKWQKWIP˙Q=IP˙IQ
61 7 adantr φ¬PKW¬QKWKHLWH
62 8 adantr φ¬PKW¬QKWPA
63 simprl φ¬PKW¬QKW¬PKW
64 62 63 jca φ¬PKW¬QKWPA¬PKW
65 9 adantr φ¬PKW¬QKWQA
66 simprr φ¬PKW¬QKW¬QKW
67 65 66 jca φ¬PKW¬QKWQA¬QKW
68 10 1 2 3 4 5 6 61 64 67 dihjatcc φ¬PKW¬QKWIP˙Q=IP˙IQ
69 18 29 60 68 4casesdan φIP˙Q=IP˙IQ