Metamath Proof Explorer


Theorem dihjatcclem2

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b B = Base K
dihjatcclem.l ˙ = K
dihjatcclem.h H = LHyp K
dihjatcclem.j ˙ = join K
dihjatcclem.m ˙ = meet K
dihjatcclem.a A = Atoms K
dihjatcclem.u U = DVecH K W
dihjatcclem.s ˙ = LSSum U
dihjatcclem.i I = DIsoH K W
dihjatcclem.v V = P ˙ Q ˙ W
dihjatcclem.k φ K HL W H
dihjatcclem.p φ P A ¬ P ˙ W
dihjatcclem.q φ Q A ¬ Q ˙ W
dihjatcclem2.c φ I V I P ˙ I Q
Assertion dihjatcclem2 φ I P ˙ Q = I P ˙ I Q

Proof

Step Hyp Ref Expression
1 dihjatcclem.b B = Base K
2 dihjatcclem.l ˙ = K
3 dihjatcclem.h H = LHyp K
4 dihjatcclem.j ˙ = join K
5 dihjatcclem.m ˙ = meet K
6 dihjatcclem.a A = Atoms K
7 dihjatcclem.u U = DVecH K W
8 dihjatcclem.s ˙ = LSSum U
9 dihjatcclem.i I = DIsoH K W
10 dihjatcclem.v V = P ˙ Q ˙ W
11 dihjatcclem.k φ K HL W H
12 dihjatcclem.p φ P A ¬ P ˙ W
13 dihjatcclem.q φ Q A ¬ Q ˙ W
14 dihjatcclem2.c φ I V I P ˙ I Q
15 1 2 3 4 5 6 7 8 9 10 11 12 13 dihjatcclem1 φ I P ˙ Q = I P ˙ I Q ˙ I V
16 3 7 11 dvhlmod φ U LMod
17 eqid LSubSp U = LSubSp U
18 17 lsssssubg U LMod LSubSp U SubGrp U
19 16 18 syl φ LSubSp U SubGrp U
20 12 simpld φ P A
21 1 6 atbase P A P B
22 20 21 syl φ P B
23 1 3 9 7 17 dihlss K HL W H P B I P LSubSp U
24 11 22 23 syl2anc φ I P LSubSp U
25 13 simpld φ Q A
26 1 6 atbase Q A Q B
27 25 26 syl φ Q B
28 1 3 9 7 17 dihlss K HL W H Q B I Q LSubSp U
29 11 27 28 syl2anc φ I Q LSubSp U
30 17 8 lsmcl U LMod I P LSubSp U I Q LSubSp U I P ˙ I Q LSubSp U
31 16 24 29 30 syl3anc φ I P ˙ I Q LSubSp U
32 19 31 sseldd φ I P ˙ I Q SubGrp U
33 10 fveq2i I V = I P ˙ Q ˙ W
34 11 simpld φ K HL
35 34 hllatd φ K Lat
36 1 4 6 hlatjcl K HL P A Q A P ˙ Q B
37 34 20 25 36 syl3anc φ P ˙ Q B
38 11 simprd φ W H
39 1 3 lhpbase W H W B
40 38 39 syl φ W B
41 1 5 latmcl K Lat P ˙ Q B W B P ˙ Q ˙ W B
42 35 37 40 41 syl3anc φ P ˙ Q ˙ W B
43 1 3 9 7 17 dihlss K HL W H P ˙ Q ˙ W B I P ˙ Q ˙ W LSubSp U
44 11 42 43 syl2anc φ I P ˙ Q ˙ W LSubSp U
45 33 44 eqeltrid φ I V LSubSp U
46 19 45 sseldd φ I V SubGrp U
47 8 lsmss2 I P ˙ I Q SubGrp U I V SubGrp U I V I P ˙ I Q I P ˙ I Q ˙ I V = I P ˙ I Q
48 32 46 14 47 syl3anc φ I P ˙ I Q ˙ I V = I P ˙ I Q
49 15 48 eqtrd φ I P ˙ Q = I P ˙ I Q