Metamath Proof Explorer


Theorem dimvalfi

Description: The dimension of a vector space F is the cardinality of one of its bases. This version of dimval does not depend on the axiom of choice, but it is limited to the case where the base S is finite. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypothesis dimval.1 J = LBasis F
Assertion dimvalfi F LVec S J S Fin dim F = S

Proof

Step Hyp Ref Expression
1 dimval.1 J = LBasis F
2 elex F LVec F V
3 fveq2 f = F LBasis f = LBasis F
4 3 1 eqtr4di f = F LBasis f = J
5 4 imaeq2d f = F . LBasis f = . J
6 5 unieqd f = F . LBasis f = . J
7 df-dim dim = f V . LBasis f
8 hashf . : V 0 +∞
9 ffun . : V 0 +∞ Fun .
10 1 fvexi J V
11 10 funimaex Fun . . J V
12 8 9 11 mp2b . J V
13 12 uniex . J V
14 6 7 13 fvmpt F V dim F = . J
15 2 14 syl F LVec dim F = . J
16 15 3ad2ant1 F LVec S J S Fin dim F = . J
17 simpll1 F LVec S J S Fin x . J t J F LVec
18 simpll2 F LVec S J S Fin x . J t J S J
19 simpr F LVec S J S Fin x . J t J t J
20 simpll3 F LVec S J S Fin x . J t J S Fin
21 1 17 18 19 20 lvecdimfi F LVec S J S Fin x . J t J S t
22 hasheni S t S = t
23 21 22 syl F LVec S J S Fin x . J t J S = t
24 23 adantr F LVec S J S Fin x . J t J t = x S = t
25 simpr F LVec S J S Fin x . J t J t = x t = x
26 24 25 eqtr2d F LVec S J S Fin x . J t J t = x x = S
27 8 9 ax-mp Fun .
28 fvelima Fun . x . J t J t = x
29 27 28 mpan x . J t J t = x
30 29 adantl F LVec S J S Fin x . J t J t = x
31 26 30 r19.29a F LVec S J S Fin x . J x = S
32 31 ralrimiva F LVec S J S Fin x . J x = S
33 ne0i S J J
34 33 3ad2ant2 F LVec S J S Fin J
35 ffn . : V 0 +∞ . Fn V
36 8 35 ax-mp . Fn V
37 ssv J V
38 fnimaeq0 . Fn V J V . J = J =
39 36 37 38 mp2an . J = J =
40 39 necon3bii . J J
41 34 40 sylibr F LVec S J S Fin . J
42 eqsn . J . J = S x . J x = S
43 41 42 syl F LVec S J S Fin . J = S x . J x = S
44 32 43 mpbird F LVec S J S Fin . J = S
45 44 unieqd F LVec S J S Fin . J = S
46 fvex S V
47 46 unisn S = S
48 47 a1i F LVec S J S Fin S = S
49 16 45 48 3eqtrd F LVec S J S Fin dim F = S