Description: The dimension of a vector space F is the cardinality of one of its bases. This version of dimval does not depend on the axiom of choice, but it is limited to the case where the base S is finite. (Contributed by Thierry Arnoux, 24-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dimval.1 | |
|
Assertion | dimvalfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dimval.1 | |
|
2 | elex | |
|
3 | fveq2 | |
|
4 | 3 1 | eqtr4di | |
5 | 4 | imaeq2d | |
6 | 5 | unieqd | |
7 | df-dim | |
|
8 | hashf | |
|
9 | ffun | |
|
10 | 1 | fvexi | |
11 | 10 | funimaex | |
12 | 8 9 11 | mp2b | |
13 | 12 | uniex | |
14 | 6 7 13 | fvmpt | |
15 | 2 14 | syl | |
16 | 15 | 3ad2ant1 | |
17 | simpll1 | |
|
18 | simpll2 | |
|
19 | simpr | |
|
20 | simpll3 | |
|
21 | 1 17 18 19 20 | lvecdimfi | |
22 | hasheni | |
|
23 | 21 22 | syl | |
24 | 23 | adantr | |
25 | simpr | |
|
26 | 24 25 | eqtr2d | |
27 | 8 9 | ax-mp | |
28 | fvelima | |
|
29 | 27 28 | mpan | |
30 | 29 | adantl | |
31 | 26 30 | r19.29a | |
32 | 31 | ralrimiva | |
33 | ne0i | |
|
34 | 33 | 3ad2ant2 | |
35 | ffn | |
|
36 | 8 35 | ax-mp | |
37 | ssv | |
|
38 | fnimaeq0 | |
|
39 | 36 37 38 | mp2an | |
40 | 39 | necon3bii | |
41 | 34 40 | sylibr | |
42 | eqsn | |
|
43 | 41 42 | syl | |
44 | 32 43 | mpbird | |
45 | 44 | unieqd | |
46 | fvex | |
|
47 | 46 | unisn | |
48 | 47 | a1i | |
49 | 16 45 48 | 3eqtrd | |