Metamath Proof Explorer


Theorem dimvalfi

Description: The dimension of a vector space F is the cardinality of one of its bases. This version of dimval does not depend on the axiom of choice, but it is limited to the case where the base S is finite. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypothesis dimval.1 J=LBasisF
Assertion dimvalfi FLVecSJSFindimF=S

Proof

Step Hyp Ref Expression
1 dimval.1 J=LBasisF
2 elex FLVecFV
3 fveq2 f=FLBasisf=LBasisF
4 3 1 eqtr4di f=FLBasisf=J
5 4 imaeq2d f=F.LBasisf=.J
6 5 unieqd f=F.LBasisf=.J
7 df-dim dim=fV.LBasisf
8 hashf .:V0+∞
9 ffun .:V0+∞Fun.
10 1 fvexi JV
11 10 funimaex Fun..JV
12 8 9 11 mp2b .JV
13 12 uniex .JV
14 6 7 13 fvmpt FVdimF=.J
15 2 14 syl FLVecdimF=.J
16 15 3ad2ant1 FLVecSJSFindimF=.J
17 simpll1 FLVecSJSFinx.JtJFLVec
18 simpll2 FLVecSJSFinx.JtJSJ
19 simpr FLVecSJSFinx.JtJtJ
20 simpll3 FLVecSJSFinx.JtJSFin
21 1 17 18 19 20 lvecdimfi FLVecSJSFinx.JtJSt
22 hasheni StS=t
23 21 22 syl FLVecSJSFinx.JtJS=t
24 23 adantr FLVecSJSFinx.JtJt=xS=t
25 simpr FLVecSJSFinx.JtJt=xt=x
26 24 25 eqtr2d FLVecSJSFinx.JtJt=xx=S
27 8 9 ax-mp Fun.
28 fvelima Fun.x.JtJt=x
29 27 28 mpan x.JtJt=x
30 29 adantl FLVecSJSFinx.JtJt=x
31 26 30 r19.29a FLVecSJSFinx.Jx=S
32 31 ralrimiva FLVecSJSFinx.Jx=S
33 ne0i SJJ
34 33 3ad2ant2 FLVecSJSFinJ
35 ffn .:V0+∞.FnV
36 8 35 ax-mp .FnV
37 ssv JV
38 fnimaeq0 .FnVJV.J=J=
39 36 37 38 mp2an .J=J=
40 39 necon3bii .JJ
41 34 40 sylibr FLVecSJSFin.J
42 eqsn .J.J=Sx.Jx=S
43 41 42 syl FLVecSJSFin.J=Sx.Jx=S
44 32 43 mpbird FLVecSJSFin.J=S
45 44 unieqd FLVecSJSFin.J=S
46 fvex SV
47 46 unisn S=S
48 47 a1i FLVecSJSFinS=S
49 16 45 48 3eqtrd FLVecSJSFindimF=S