| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ditgcl.x |
|
| 2 |
|
ditgcl.y |
|
| 3 |
|
ditgcl.a |
|
| 4 |
|
ditgcl.b |
|
| 5 |
|
ditgcl.c |
|
| 6 |
|
ditgcl.i |
|
| 7 |
|
elicc2 |
|
| 8 |
1 2 7
|
syl2anc |
|
| 9 |
3 8
|
mpbid |
|
| 10 |
9
|
simp1d |
|
| 11 |
|
elicc2 |
|
| 12 |
1 2 11
|
syl2anc |
|
| 13 |
4 12
|
mpbid |
|
| 14 |
13
|
simp1d |
|
| 15 |
|
simpr |
|
| 16 |
10
|
adantr |
|
| 17 |
14
|
adantr |
|
| 18 |
15 16 17
|
ditgneg |
|
| 19 |
15
|
ditgpos |
|
| 20 |
19
|
negeqd |
|
| 21 |
18 20
|
eqtr4d |
|
| 22 |
1
|
rexrd |
|
| 23 |
13
|
simp2d |
|
| 24 |
|
iooss1 |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
2
|
rexrd |
|
| 27 |
9
|
simp3d |
|
| 28 |
|
iooss2 |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
25 29
|
sstrd |
|
| 31 |
30
|
sselda |
|
| 32 |
|
iblmbf |
|
| 33 |
6 32
|
syl |
|
| 34 |
33 5
|
mbfmptcl |
|
| 35 |
31 34
|
syldan |
|
| 36 |
|
ioombl |
|
| 37 |
36
|
a1i |
|
| 38 |
30 37 5 6
|
iblss |
|
| 39 |
35 38
|
itgcl |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
negnegd |
|
| 42 |
|
simpr |
|
| 43 |
14
|
adantr |
|
| 44 |
10
|
adantr |
|
| 45 |
42 43 44
|
ditgneg |
|
| 46 |
45
|
negeqd |
|
| 47 |
42
|
ditgpos |
|
| 48 |
41 46 47
|
3eqtr4rd |
|
| 49 |
10 14 21 48
|
lecasei |
|