Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ditgcl.x | |
|
ditgcl.y | |
||
ditgcl.a | |
||
ditgcl.b | |
||
ditgcl.c | |
||
ditgcl.i | |
||
Assertion | ditgswap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgcl.x | |
|
2 | ditgcl.y | |
|
3 | ditgcl.a | |
|
4 | ditgcl.b | |
|
5 | ditgcl.c | |
|
6 | ditgcl.i | |
|
7 | elicc2 | |
|
8 | 1 2 7 | syl2anc | |
9 | 3 8 | mpbid | |
10 | 9 | simp1d | |
11 | elicc2 | |
|
12 | 1 2 11 | syl2anc | |
13 | 4 12 | mpbid | |
14 | 13 | simp1d | |
15 | simpr | |
|
16 | 10 | adantr | |
17 | 14 | adantr | |
18 | 15 16 17 | ditgneg | |
19 | 15 | ditgpos | |
20 | 19 | negeqd | |
21 | 18 20 | eqtr4d | |
22 | 1 | rexrd | |
23 | 13 | simp2d | |
24 | iooss1 | |
|
25 | 22 23 24 | syl2anc | |
26 | 2 | rexrd | |
27 | 9 | simp3d | |
28 | iooss2 | |
|
29 | 26 27 28 | syl2anc | |
30 | 25 29 | sstrd | |
31 | 30 | sselda | |
32 | iblmbf | |
|
33 | 6 32 | syl | |
34 | 33 5 | mbfmptcl | |
35 | 31 34 | syldan | |
36 | ioombl | |
|
37 | 36 | a1i | |
38 | 30 37 5 6 | iblss | |
39 | 35 38 | itgcl | |
40 | 39 | adantr | |
41 | 40 | negnegd | |
42 | simpr | |
|
43 | 14 | adantr | |
44 | 10 | adantr | |
45 | 42 43 44 | ditgneg | |
46 | 45 | negeqd | |
47 | 42 | ditgpos | |
48 | 41 46 47 | 3eqtr4rd | |
49 | 10 14 21 48 | lecasei | |