| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcddvds |  | 
						
							| 2 | 1 | 3adant3 |  | 
						
							| 3 |  | gcdcl |  | 
						
							| 4 | 3 | nn0zd |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 | 4 5 | jca |  | 
						
							| 7 | 6 | 3adant3 |  | 
						
							| 8 |  | divides |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 4 10 | jca |  | 
						
							| 12 | 11 | 3adant3 |  | 
						
							| 13 |  | divides |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 9 14 | anbi12d |  | 
						
							| 16 |  | bezout |  | 
						
							| 17 | 16 | 3adant3 |  | 
						
							| 18 |  | oveq1 |  | 
						
							| 19 |  | oveq1 |  | 
						
							| 20 | 18 19 | oveqan12rd |  | 
						
							| 21 | 20 | eqeq2d |  | 
						
							| 22 | 21 | bicomd |  | 
						
							| 23 |  | simpl |  | 
						
							| 24 | 23 | zcnd |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 3 | nn0cnd |  | 
						
							| 27 | 26 | 3adant3 |  | 
						
							| 28 | 27 | ad2antrr |  | 
						
							| 29 |  | simpl |  | 
						
							| 30 | 29 | zcnd |  | 
						
							| 31 | 30 | ad2antlr |  | 
						
							| 32 | 25 28 31 | mul32d |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 33 | zcnd |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 36 | zcnd |  | 
						
							| 38 | 37 | ad2antlr |  | 
						
							| 39 | 35 28 38 | mul32d |  | 
						
							| 40 | 32 39 | oveq12d |  | 
						
							| 41 | 40 | eqeq2d |  | 
						
							| 42 | 23 | adantl |  | 
						
							| 43 | 29 | ad2antlr |  | 
						
							| 44 | 42 43 | zmulcld |  | 
						
							| 45 | 4 | 3adant3 |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 | 44 46 | zmulcld |  | 
						
							| 48 | 33 | adantl |  | 
						
							| 49 | 36 | ad2antlr |  | 
						
							| 50 | 48 49 | zmulcld |  | 
						
							| 51 | 3 | 3adant3 |  | 
						
							| 52 | 51 | ad2antrr |  | 
						
							| 53 | 52 | nn0zd |  | 
						
							| 54 | 50 53 | zmulcld |  | 
						
							| 55 | 47 54 | zaddcld |  | 
						
							| 56 | 55 | zcnd |  | 
						
							| 57 |  | gcd2n0cl |  | 
						
							| 58 |  | nnrp |  | 
						
							| 59 | 58 | rpcnne0d |  | 
						
							| 60 | 57 59 | syl |  | 
						
							| 61 | 60 | ad2antrr |  | 
						
							| 62 |  | div11 |  | 
						
							| 63 | 28 56 61 62 | syl3anc |  | 
						
							| 64 |  | divid |  | 
						
							| 65 | 61 64 | syl |  | 
						
							| 66 | 47 | zcnd |  | 
						
							| 67 | 54 | zcnd |  | 
						
							| 68 |  | divdir |  | 
						
							| 69 | 66 67 61 68 | syl3anc |  | 
						
							| 70 | 44 | zcnd |  | 
						
							| 71 | 51 | nn0cnd |  | 
						
							| 72 | 71 | ad2antrr |  | 
						
							| 73 | 57 | nnne0d |  | 
						
							| 74 | 73 | ad2antrr |  | 
						
							| 75 | 70 72 74 | divcan4d |  | 
						
							| 76 | 50 | zcnd |  | 
						
							| 77 | 76 28 74 | divcan4d |  | 
						
							| 78 | 75 77 | oveq12d |  | 
						
							| 79 | 69 78 | eqtrd |  | 
						
							| 80 | 65 79 | eqeq12d |  | 
						
							| 81 | 41 63 80 | 3bitr2d |  | 
						
							| 82 | 22 81 | sylan9bbr |  | 
						
							| 83 |  | eqcom |  | 
						
							| 84 |  | simpr |  | 
						
							| 85 | 84 | anim1ci |  | 
						
							| 86 |  | bezoutr1 |  | 
						
							| 87 | 85 86 | syl |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 | 83 88 | biimtrid |  | 
						
							| 90 |  | simpll1 |  | 
						
							| 91 | 90 | zcnd |  | 
						
							| 92 |  | divmul3 |  | 
						
							| 93 | 91 25 61 92 | syl3anc |  | 
						
							| 94 |  | eqcom |  | 
						
							| 95 |  | eqcom |  | 
						
							| 96 | 93 94 95 | 3bitr4g |  | 
						
							| 97 | 96 | biimprd |  | 
						
							| 98 | 97 | a1d |  | 
						
							| 99 | 98 | imp32 |  | 
						
							| 100 |  | simp2 |  | 
						
							| 101 | 100 | zcnd |  | 
						
							| 102 | 101 | ad2antrr |  | 
						
							| 103 |  | divmul3 |  | 
						
							| 104 | 102 35 61 103 | syl3anc |  | 
						
							| 105 |  | eqcom |  | 
						
							| 106 |  | eqcom |  | 
						
							| 107 | 104 105 106 | 3bitr4g |  | 
						
							| 108 | 107 | biimprd |  | 
						
							| 109 | 108 | a1dd |  | 
						
							| 110 | 109 | imp32 |  | 
						
							| 111 | 99 110 | oveq12d |  | 
						
							| 112 | 111 | eqeq1d |  | 
						
							| 113 | 89 112 | sylibd |  | 
						
							| 114 | 82 113 | sylbid |  | 
						
							| 115 | 114 | exp32 |  | 
						
							| 116 | 115 | com34 |  | 
						
							| 117 | 116 | com23 |  | 
						
							| 118 | 117 | ex |  | 
						
							| 119 | 118 | com23 |  | 
						
							| 120 | 119 | rexlimdvva |  | 
						
							| 121 | 17 120 | mpd |  | 
						
							| 122 | 121 | impl |  | 
						
							| 123 | 122 | rexlimdva |  | 
						
							| 124 | 123 | com23 |  | 
						
							| 125 | 124 | rexlimdva |  | 
						
							| 126 | 125 | impd |  | 
						
							| 127 | 15 126 | sylbid |  | 
						
							| 128 | 2 127 | mpd |  |