Metamath Proof Explorer


Theorem divgcdcoprm0

Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021)

Ref Expression
Assertion divgcdcoprm0 ABB0AAgcdBgcdBAgcdB=1

Proof

Step Hyp Ref Expression
1 gcddvds ABAgcdBAAgcdBB
2 1 3adant3 ABB0AgcdBAAgcdBB
3 gcdcl ABAgcdB0
4 3 nn0zd ABAgcdB
5 simpl ABA
6 4 5 jca ABAgcdBA
7 6 3adant3 ABB0AgcdBA
8 divides AgcdBAAgcdBAaaAgcdB=A
9 7 8 syl ABB0AgcdBAaaAgcdB=A
10 simpr ABB
11 4 10 jca ABAgcdBB
12 11 3adant3 ABB0AgcdBB
13 divides AgcdBBAgcdBBbbAgcdB=B
14 12 13 syl ABB0AgcdBBbbAgcdB=B
15 9 14 anbi12d ABB0AgcdBAAgcdBBaaAgcdB=AbbAgcdB=B
16 bezout ABmnAgcdB=Am+Bn
17 16 3adant3 ABB0mnAgcdB=Am+Bn
18 oveq1 aAgcdB=AaAgcdBm=Am
19 oveq1 bAgcdB=BbAgcdBn=Bn
20 18 19 oveqan12rd bAgcdB=BaAgcdB=AaAgcdBm+bAgcdBn=Am+Bn
21 20 eqeq2d bAgcdB=BaAgcdB=AAgcdB=aAgcdBm+bAgcdBnAgcdB=Am+Bn
22 21 bicomd bAgcdB=BaAgcdB=AAgcdB=Am+BnAgcdB=aAgcdBm+bAgcdBn
23 simpl aba
24 23 zcnd aba
25 24 adantl ABB0mnaba
26 3 nn0cnd ABAgcdB
27 26 3adant3 ABB0AgcdB
28 27 ad2antrr ABB0mnabAgcdB
29 simpl mnm
30 29 zcnd mnm
31 30 ad2antlr ABB0mnabm
32 25 28 31 mul32d ABB0mnabaAgcdBm=amAgcdB
33 simpr abb
34 33 zcnd abb
35 34 adantl ABB0mnabb
36 simpr mnn
37 36 zcnd mnn
38 37 ad2antlr ABB0mnabn
39 35 28 38 mul32d ABB0mnabbAgcdBn=bnAgcdB
40 32 39 oveq12d ABB0mnabaAgcdBm+bAgcdBn=amAgcdB+bnAgcdB
41 40 eqeq2d ABB0mnabAgcdB=aAgcdBm+bAgcdBnAgcdB=amAgcdB+bnAgcdB
42 23 adantl ABB0mnaba
43 29 ad2antlr ABB0mnabm
44 42 43 zmulcld ABB0mnabam
45 4 3adant3 ABB0AgcdB
46 45 ad2antrr ABB0mnabAgcdB
47 44 46 zmulcld ABB0mnabamAgcdB
48 33 adantl ABB0mnabb
49 36 ad2antlr ABB0mnabn
50 48 49 zmulcld ABB0mnabbn
51 3 3adant3 ABB0AgcdB0
52 51 ad2antrr ABB0mnabAgcdB0
53 52 nn0zd ABB0mnabAgcdB
54 50 53 zmulcld ABB0mnabbnAgcdB
55 47 54 zaddcld ABB0mnabamAgcdB+bnAgcdB
56 55 zcnd ABB0mnabamAgcdB+bnAgcdB
57 gcd2n0cl ABB0AgcdB
58 nnrp AgcdBAgcdB+
59 58 rpcnne0d AgcdBAgcdBAgcdB0
60 57 59 syl ABB0AgcdBAgcdB0
61 60 ad2antrr ABB0mnabAgcdBAgcdB0
62 div11 AgcdBamAgcdB+bnAgcdBAgcdBAgcdB0AgcdBAgcdB=amAgcdB+bnAgcdBAgcdBAgcdB=amAgcdB+bnAgcdB
63 28 56 61 62 syl3anc ABB0mnabAgcdBAgcdB=amAgcdB+bnAgcdBAgcdBAgcdB=amAgcdB+bnAgcdB
64 divid AgcdBAgcdB0AgcdBAgcdB=1
65 61 64 syl ABB0mnabAgcdBAgcdB=1
66 47 zcnd ABB0mnabamAgcdB
67 54 zcnd ABB0mnabbnAgcdB
68 divdir amAgcdBbnAgcdBAgcdBAgcdB0amAgcdB+bnAgcdBAgcdB=amAgcdBAgcdB+bnAgcdBAgcdB
69 66 67 61 68 syl3anc ABB0mnabamAgcdB+bnAgcdBAgcdB=amAgcdBAgcdB+bnAgcdBAgcdB
70 44 zcnd ABB0mnabam
71 51 nn0cnd ABB0AgcdB
72 71 ad2antrr ABB0mnabAgcdB
73 57 nnne0d ABB0AgcdB0
74 73 ad2antrr ABB0mnabAgcdB0
75 70 72 74 divcan4d ABB0mnabamAgcdBAgcdB=am
76 50 zcnd ABB0mnabbn
77 76 28 74 divcan4d ABB0mnabbnAgcdBAgcdB=bn
78 75 77 oveq12d ABB0mnabamAgcdBAgcdB+bnAgcdBAgcdB=am+bn
79 69 78 eqtrd ABB0mnabamAgcdB+bnAgcdBAgcdB=am+bn
80 65 79 eqeq12d ABB0mnabAgcdBAgcdB=amAgcdB+bnAgcdBAgcdB1=am+bn
81 41 63 80 3bitr2d ABB0mnabAgcdB=aAgcdBm+bAgcdBn1=am+bn
82 22 81 sylan9bbr ABB0mnabbAgcdB=BaAgcdB=AAgcdB=Am+Bn1=am+bn
83 eqcom 1=am+bnam+bn=1
84 simpr ABB0mnmn
85 84 anim1ci ABB0mnababmn
86 bezoutr1 abmnam+bn=1agcdb=1
87 85 86 syl ABB0mnabam+bn=1agcdb=1
88 87 adantr ABB0mnabbAgcdB=BaAgcdB=Aam+bn=1agcdb=1
89 83 88 biimtrid ABB0mnabbAgcdB=BaAgcdB=A1=am+bnagcdb=1
90 simpll1 ABB0mnabA
91 90 zcnd ABB0mnabA
92 divmul3 AaAgcdBAgcdB0AAgcdB=aA=aAgcdB
93 91 25 61 92 syl3anc ABB0mnabAAgcdB=aA=aAgcdB
94 eqcom a=AAgcdBAAgcdB=a
95 eqcom aAgcdB=AA=aAgcdB
96 93 94 95 3bitr4g ABB0mnaba=AAgcdBaAgcdB=A
97 96 biimprd ABB0mnabaAgcdB=Aa=AAgcdB
98 97 a1d ABB0mnabbAgcdB=BaAgcdB=Aa=AAgcdB
99 98 imp32 ABB0mnabbAgcdB=BaAgcdB=Aa=AAgcdB
100 simp2 ABB0B
101 100 zcnd ABB0B
102 101 ad2antrr ABB0mnabB
103 divmul3 BbAgcdBAgcdB0BAgcdB=bB=bAgcdB
104 102 35 61 103 syl3anc ABB0mnabBAgcdB=bB=bAgcdB
105 eqcom b=BAgcdBBAgcdB=b
106 eqcom bAgcdB=BB=bAgcdB
107 104 105 106 3bitr4g ABB0mnabb=BAgcdBbAgcdB=B
108 107 biimprd ABB0mnabbAgcdB=Bb=BAgcdB
109 108 a1dd ABB0mnabbAgcdB=BaAgcdB=Ab=BAgcdB
110 109 imp32 ABB0mnabbAgcdB=BaAgcdB=Ab=BAgcdB
111 99 110 oveq12d ABB0mnabbAgcdB=BaAgcdB=Aagcdb=AAgcdBgcdBAgcdB
112 111 eqeq1d ABB0mnabbAgcdB=BaAgcdB=Aagcdb=1AAgcdBgcdBAgcdB=1
113 89 112 sylibd ABB0mnabbAgcdB=BaAgcdB=A1=am+bnAAgcdBgcdBAgcdB=1
114 82 113 sylbid ABB0mnabbAgcdB=BaAgcdB=AAgcdB=Am+BnAAgcdBgcdBAgcdB=1
115 114 exp32 ABB0mnabbAgcdB=BaAgcdB=AAgcdB=Am+BnAAgcdBgcdBAgcdB=1
116 115 com34 ABB0mnabbAgcdB=BAgcdB=Am+BnaAgcdB=AAAgcdBgcdBAgcdB=1
117 116 com23 ABB0mnabAgcdB=Am+BnbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
118 117 ex ABB0mnabAgcdB=Am+BnbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
119 118 com23 ABB0mnAgcdB=Am+BnabbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
120 119 rexlimdvva ABB0mnAgcdB=Am+BnabbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
121 17 120 mpd ABB0abbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
122 121 impl ABB0abbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
123 122 rexlimdva ABB0abbAgcdB=BaAgcdB=AAAgcdBgcdBAgcdB=1
124 123 com23 ABB0aaAgcdB=AbbAgcdB=BAAgcdBgcdBAgcdB=1
125 124 rexlimdva ABB0aaAgcdB=AbbAgcdB=BAAgcdBgcdBAgcdB=1
126 125 impd ABB0aaAgcdB=AbbAgcdB=BAAgcdBgcdBAgcdB=1
127 15 126 sylbid ABB0AgcdBAAgcdBBAAgcdBgcdBAgcdB=1
128 2 127 mpd ABB0AAgcdBgcdBAgcdB=1