Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Cancellability of congruences
divgcdcoprm0
Next ⟩
divgcdcoprmex
Metamath Proof Explorer
Ascii
Unicode
Theorem
divgcdcoprm0
Description:
Integers divided by gcd are coprime.
(Contributed by
AV
, 12-Jul-2021)
Ref
Expression
Assertion
divgcdcoprm0
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
Proof
Step
Hyp
Ref
Expression
1
gcddvds
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∥
A
∧
A
gcd
B
∥
B
2
1
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∥
A
∧
A
gcd
B
∥
B
3
gcdcl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∈
ℕ
0
4
3
nn0zd
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∈
ℤ
5
simpl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
∈
ℤ
6
4
5
jca
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∈
ℤ
∧
A
∈
ℤ
7
6
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℤ
∧
A
∈
ℤ
8
divides
⊢
A
gcd
B
∈
ℤ
∧
A
∈
ℤ
→
A
gcd
B
∥
A
↔
∃
a
∈
ℤ
a
A
gcd
B
=
A
9
7
8
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∥
A
↔
∃
a
∈
ℤ
a
A
gcd
B
=
A
10
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
B
∈
ℤ
11
4
10
jca
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∈
ℤ
∧
B
∈
ℤ
12
11
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℤ
∧
B
∈
ℤ
13
divides
⊢
A
gcd
B
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∥
B
↔
∃
b
∈
ℤ
b
A
gcd
B
=
B
14
12
13
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∥
B
↔
∃
b
∈
ℤ
b
A
gcd
B
=
B
15
9
14
anbi12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∥
A
∧
A
gcd
B
∥
B
↔
∃
a
∈
ℤ
a
A
gcd
B
=
A
∧
∃
b
∈
ℤ
b
A
gcd
B
=
B
16
bezout
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
∃
m
∈
ℤ
∃
n
∈
ℤ
A
gcd
B
=
A
m
+
B
n
17
16
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
∃
m
∈
ℤ
∃
n
∈
ℤ
A
gcd
B
=
A
m
+
B
n
18
oveq1
⊢
a
A
gcd
B
=
A
→
a
A
gcd
B
m
=
A
m
19
oveq1
⊢
b
A
gcd
B
=
B
→
b
A
gcd
B
n
=
B
n
20
18
19
oveqan12rd
⊢
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
a
A
gcd
B
m
+
b
A
gcd
B
n
=
A
m
+
B
n
21
20
eqeq2d
⊢
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
A
gcd
B
=
a
A
gcd
B
m
+
b
A
gcd
B
n
↔
A
gcd
B
=
A
m
+
B
n
22
21
bicomd
⊢
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
A
gcd
B
=
A
m
+
B
n
↔
A
gcd
B
=
a
A
gcd
B
m
+
b
A
gcd
B
n
23
simpl
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
∈
ℤ
24
23
zcnd
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
∈
ℂ
25
24
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
∈
ℂ
26
3
nn0cnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∈
ℂ
27
26
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℂ
28
27
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
∈
ℂ
29
simpl
⊢
m
∈
ℤ
∧
n
∈
ℤ
→
m
∈
ℤ
30
29
zcnd
⊢
m
∈
ℤ
∧
n
∈
ℤ
→
m
∈
ℂ
31
30
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
m
∈
ℂ
32
25
28
31
mul32d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
A
gcd
B
m
=
a
m
A
gcd
B
33
simpr
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
b
∈
ℤ
34
33
zcnd
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
b
∈
ℂ
35
34
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
∈
ℂ
36
simpr
⊢
m
∈
ℤ
∧
n
∈
ℤ
→
n
∈
ℤ
37
36
zcnd
⊢
m
∈
ℤ
∧
n
∈
ℤ
→
n
∈
ℂ
38
37
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
n
∈
ℂ
39
35
28
38
mul32d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
n
=
b
n
A
gcd
B
40
32
39
oveq12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
A
gcd
B
m
+
b
A
gcd
B
n
=
a
m
A
gcd
B
+
b
n
A
gcd
B
41
40
eqeq2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
=
a
A
gcd
B
m
+
b
A
gcd
B
n
↔
A
gcd
B
=
a
m
A
gcd
B
+
b
n
A
gcd
B
42
23
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
∈
ℤ
43
29
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
m
∈
ℤ
44
42
43
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
∈
ℤ
45
4
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℤ
46
45
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
∈
ℤ
47
44
46
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
∈
ℤ
48
33
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
∈
ℤ
49
36
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
n
∈
ℤ
50
48
49
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
n
∈
ℤ
51
3
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℕ
0
52
51
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
∈
ℕ
0
53
52
nn0zd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
∈
ℤ
54
50
53
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
n
A
gcd
B
∈
ℤ
55
47
54
zaddcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
+
b
n
A
gcd
B
∈
ℤ
56
55
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
+
b
n
A
gcd
B
∈
ℂ
57
gcd2n0cl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℕ
58
nnrp
⊢
A
gcd
B
∈
ℕ
→
A
gcd
B
∈
ℝ
+
59
58
rpcnne0d
⊢
A
gcd
B
∈
ℕ
→
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
60
57
59
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
61
60
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
62
div11
⊢
A
gcd
B
∈
ℂ
∧
a
m
A
gcd
B
+
b
n
A
gcd
B
∈
ℂ
∧
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
→
A
gcd
B
A
gcd
B
=
a
m
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
↔
A
gcd
B
=
a
m
A
gcd
B
+
b
n
A
gcd
B
63
28
56
61
62
syl3anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
A
gcd
B
=
a
m
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
↔
A
gcd
B
=
a
m
A
gcd
B
+
b
n
A
gcd
B
64
divid
⊢
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
→
A
gcd
B
A
gcd
B
=
1
65
61
64
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
A
gcd
B
=
1
66
47
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
∈
ℂ
67
54
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
n
A
gcd
B
∈
ℂ
68
divdir
⊢
a
m
A
gcd
B
∈
ℂ
∧
b
n
A
gcd
B
∈
ℂ
∧
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
→
a
m
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
=
a
m
A
gcd
B
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
69
66
67
61
68
syl3anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
=
a
m
A
gcd
B
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
70
44
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
∈
ℂ
71
51
nn0cnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∈
ℂ
72
71
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
∈
ℂ
73
57
nnne0d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
≠
0
74
73
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
≠
0
75
70
72
74
divcan4d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
A
gcd
B
=
a
m
76
50
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
n
∈
ℂ
77
76
28
74
divcan4d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
n
A
gcd
B
A
gcd
B
=
b
n
78
75
77
oveq12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
=
a
m
+
b
n
79
69
78
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
=
a
m
+
b
n
80
65
79
eqeq12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
A
gcd
B
=
a
m
A
gcd
B
+
b
n
A
gcd
B
A
gcd
B
↔
1
=
a
m
+
b
n
81
41
63
80
3bitr2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
=
a
A
gcd
B
m
+
b
A
gcd
B
n
↔
1
=
a
m
+
b
n
82
22
81
sylan9bbr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
A
gcd
B
=
A
m
+
B
n
↔
1
=
a
m
+
b
n
83
eqcom
⊢
1
=
a
m
+
b
n
↔
a
m
+
b
n
=
1
84
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
→
m
∈
ℤ
∧
n
∈
ℤ
85
84
anim1ci
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
∈
ℤ
∧
b
∈
ℤ
∧
m
∈
ℤ
∧
n
∈
ℤ
86
bezoutr1
⊢
a
∈
ℤ
∧
b
∈
ℤ
∧
m
∈
ℤ
∧
n
∈
ℤ
→
a
m
+
b
n
=
1
→
a
gcd
b
=
1
87
85
86
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
m
+
b
n
=
1
→
a
gcd
b
=
1
88
87
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
a
m
+
b
n
=
1
→
a
gcd
b
=
1
89
83
88
biimtrid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
1
=
a
m
+
b
n
→
a
gcd
b
=
1
90
simpll1
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
∈
ℤ
91
90
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
∈
ℂ
92
divmul3
⊢
A
∈
ℂ
∧
a
∈
ℂ
∧
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
→
A
A
gcd
B
=
a
↔
A
=
a
A
gcd
B
93
91
25
61
92
syl3anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
A
gcd
B
=
a
↔
A
=
a
A
gcd
B
94
eqcom
⊢
a
=
A
A
gcd
B
↔
A
A
gcd
B
=
a
95
eqcom
⊢
a
A
gcd
B
=
A
↔
A
=
a
A
gcd
B
96
93
94
95
3bitr4g
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
=
A
A
gcd
B
↔
a
A
gcd
B
=
A
97
96
biimprd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
A
gcd
B
=
A
→
a
=
A
A
gcd
B
98
97
a1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
a
=
A
A
gcd
B
99
98
imp32
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
a
=
A
A
gcd
B
100
simp2
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
B
∈
ℤ
101
100
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
B
∈
ℂ
102
101
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
B
∈
ℂ
103
divmul3
⊢
B
∈
ℂ
∧
b
∈
ℂ
∧
A
gcd
B
∈
ℂ
∧
A
gcd
B
≠
0
→
B
A
gcd
B
=
b
↔
B
=
b
A
gcd
B
104
102
35
61
103
syl3anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
B
A
gcd
B
=
b
↔
B
=
b
A
gcd
B
105
eqcom
⊢
b
=
B
A
gcd
B
↔
B
A
gcd
B
=
b
106
eqcom
⊢
b
A
gcd
B
=
B
↔
B
=
b
A
gcd
B
107
104
105
106
3bitr4g
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
=
B
A
gcd
B
↔
b
A
gcd
B
=
B
108
107
biimprd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
b
=
B
A
gcd
B
109
108
a1dd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
b
=
B
A
gcd
B
110
109
imp32
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
b
=
B
A
gcd
B
111
99
110
oveq12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
a
gcd
b
=
A
A
gcd
B
gcd
B
A
gcd
B
112
111
eqeq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
a
gcd
b
=
1
↔
A
A
gcd
B
gcd
B
A
gcd
B
=
1
113
89
112
sylibd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
1
=
a
m
+
b
n
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
114
82
113
sylbid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
∧
b
A
gcd
B
=
B
∧
a
A
gcd
B
=
A
→
A
gcd
B
=
A
m
+
B
n
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
115
114
exp32
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
gcd
B
=
A
m
+
B
n
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
116
115
com34
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
A
gcd
B
=
A
m
+
B
n
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
117
116
com23
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
∧
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
=
A
m
+
B
n
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
118
117
ex
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
→
a
∈
ℤ
∧
b
∈
ℤ
→
A
gcd
B
=
A
m
+
B
n
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
119
118
com23
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
m
∈
ℤ
∧
n
∈
ℤ
→
A
gcd
B
=
A
m
+
B
n
→
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
120
119
rexlimdvva
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
∃
m
∈
ℤ
∃
n
∈
ℤ
A
gcd
B
=
A
m
+
B
n
→
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
121
17
120
mpd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
122
121
impl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
a
∈
ℤ
∧
b
∈
ℤ
→
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
123
122
rexlimdva
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
a
∈
ℤ
→
∃
b
∈
ℤ
b
A
gcd
B
=
B
→
a
A
gcd
B
=
A
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
124
123
com23
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
∧
a
∈
ℤ
→
a
A
gcd
B
=
A
→
∃
b
∈
ℤ
b
A
gcd
B
=
B
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
125
124
rexlimdva
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
∃
a
∈
ℤ
a
A
gcd
B
=
A
→
∃
b
∈
ℤ
b
A
gcd
B
=
B
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
126
125
impd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
∃
a
∈
ℤ
a
A
gcd
B
=
A
∧
∃
b
∈
ℤ
b
A
gcd
B
=
B
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
127
15
126
sylbid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
gcd
B
∥
A
∧
A
gcd
B
∥
B
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1
128
2
127
mpd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
B
≠
0
→
A
A
gcd
B
gcd
B
A
gcd
B
=
1