Description: The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmatid.a | |
|
dmatid.b | |
||
dmatid.0 | |
||
dmatid.d | |
||
Assertion | dmatsubcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | |
|
2 | dmatid.b | |
|
3 | dmatid.0 | |
|
4 | dmatid.d | |
|
5 | 1 | matgrp | |
6 | 5 | adantr | |
7 | 1 2 3 4 | dmatmat | |
8 | 7 | imp | |
9 | 8 | adantrr | |
10 | 1 2 3 4 | dmatmat | |
11 | 10 | imp | |
12 | 11 | adantrl | |
13 | eqid | |
|
14 | 2 13 | grpsubcl | |
15 | 6 9 12 14 | syl3anc | |
16 | simpr | |
|
17 | 16 | adantr | |
18 | 17 | adantr | |
19 | 7 10 | anim12d | |
20 | 19 | imp | |
21 | 20 | adantr | |
22 | simpr | |
|
23 | eqid | |
|
24 | 1 2 13 23 | matsubgcell | |
25 | 18 21 22 24 | syl3anc | |
26 | 25 | adantr | |
27 | simpll | |
|
28 | simprl | |
|
29 | 27 17 28 | 3jca | |
30 | 29 | adantr | |
31 | 30 | adantr | |
32 | simplrl | |
|
33 | simplrr | |
|
34 | simpr | |
|
35 | 1 2 3 4 | dmatelnd | |
36 | 31 32 33 34 35 | syl13anc | |
37 | simprr | |
|
38 | 27 17 37 | 3jca | |
39 | 38 | adantr | |
40 | 39 | adantr | |
41 | 1 2 3 4 | dmatelnd | |
42 | 40 32 33 34 41 | syl13anc | |
43 | 36 42 | oveq12d | |
44 | ringgrp | |
|
45 | eqid | |
|
46 | 45 3 | ring0cl | |
47 | 44 46 | jca | |
48 | 47 | adantl | |
49 | 45 3 23 | grpsubid | |
50 | 48 49 | syl | |
51 | 50 | ad3antrrr | |
52 | 26 43 51 | 3eqtrd | |
53 | 52 | ex | |
54 | 53 | ralrimivva | |
55 | 1 2 3 4 | dmatel | |
56 | 55 | adantr | |
57 | 15 54 56 | mpbir2and | |