Step |
Hyp |
Ref |
Expression |
1 |
|
dmdbr4 |
|
2 |
|
chub1 |
|
3 |
2
|
ancoms |
|
4 |
|
ssin |
|
5 |
|
sstr2 |
|
6 |
4 5
|
sylbi |
|
7 |
3 6
|
sylan |
|
8 |
7
|
ex |
|
9 |
8
|
com23 |
|
10 |
9
|
ralimdva |
|
11 |
10
|
adantl |
|
12 |
1 11
|
sylbid |
|
13 |
|
sseq1 |
|
14 |
|
id |
|
15 |
|
oveq1 |
|
16 |
15
|
ineq1d |
|
17 |
16
|
oveq1d |
|
18 |
14 17
|
sseq12d |
|
19 |
13 18
|
imbi12d |
|
20 |
19
|
rspccv |
|
21 |
|
chjcl |
|
22 |
21
|
ancoms |
|
23 |
22
|
adantll |
|
24 |
|
chjcl |
|
25 |
24
|
adantr |
|
26 |
|
chincl |
|
27 |
23 25 26
|
syl2anc |
|
28 |
|
inss2 |
|
29 |
|
pm2.27 |
|
30 |
28 29
|
mpii |
|
31 |
27 30
|
syl |
|
32 |
|
chub2 |
|
33 |
32
|
adantll |
|
34 |
|
chub2 |
|
35 |
34
|
ancoms |
|
36 |
35
|
adantr |
|
37 |
33 36
|
ssind |
|
38 |
|
simplr |
|
39 |
|
chlejb2 |
|
40 |
38 27 39
|
syl2anc |
|
41 |
37 40
|
mpbid |
|
42 |
41
|
ineq1d |
|
43 |
|
inass |
|
44 |
|
incom |
|
45 |
|
chabs2 |
|
46 |
44 45
|
eqtrid |
|
47 |
46
|
ineq2d |
|
48 |
43 47
|
eqtrid |
|
49 |
48
|
adantr |
|
50 |
42 49
|
eqtrd |
|
51 |
50
|
oveq1d |
|
52 |
51
|
sseq2d |
|
53 |
31 52
|
sylibd |
|
54 |
53
|
ex |
|
55 |
54
|
com23 |
|
56 |
20 55
|
syl5 |
|
57 |
56
|
ralrimdv |
|
58 |
|
dmdbr4 |
|
59 |
57 58
|
sylibrd |
|
60 |
12 59
|
impbid |
|