Metamath Proof Explorer


Theorem dmdbr5

Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdbr5 ACBCA𝑀*BxCxABxxBAB

Proof

Step Hyp Ref Expression
1 dmdbr4 ACBCA𝑀*BxCxBABxBAB
2 chub1 xCBCxxB
3 2 ancoms BCxCxxB
4 ssin xxBxABxxBAB
5 sstr2 xxBABxBABxBABxxBAB
6 4 5 sylbi xxBxABxBABxBABxxBAB
7 3 6 sylan BCxCxABxBABxBABxxBAB
8 7 ex BCxCxABxBABxBABxxBAB
9 8 com23 BCxCxBABxBABxABxxBAB
10 9 ralimdva BCxCxBABxBABxCxABxxBAB
11 10 adantl ACBCxCxBABxBABxCxABxxBAB
12 1 11 sylbid ACBCA𝑀*BxCxABxxBAB
13 sseq1 x=yBABxAByBABAB
14 id x=yBABx=yBAB
15 oveq1 x=yBABxB=yBABB
16 15 ineq1d x=yBABxBA=yBABBA
17 16 oveq1d x=yBABxBAB=yBABBAB
18 14 17 sseq12d x=yBABxxBAByBAByBABBAB
19 13 18 imbi12d x=yBABxABxxBAByBABAByBAByBABBAB
20 19 rspccv xCxABxxBAByBABCyBABAByBAByBABBAB
21 chjcl yCBCyBC
22 21 ancoms BCyCyBC
23 22 adantll ACBCyCyBC
24 chjcl ACBCABC
25 24 adantr ACBCyCABC
26 chincl yBCABCyBABC
27 23 25 26 syl2anc ACBCyCyBABC
28 inss2 yBABAB
29 pm2.27 yBABCyBABCyBABAByBAByBABBAByBABAByBAByBABBAB
30 28 29 mpii yBABCyBABCyBABAByBAByBABBAByBAByBABBAB
31 27 30 syl ACBCyCyBABCyBABAByBAByBABBAByBAByBABBAB
32 chub2 BCyCByB
33 32 adantll ACBCyCByB
34 chub2 BCACBAB
35 34 ancoms ACBCBAB
36 35 adantr ACBCyCBAB
37 33 36 ssind ACBCyCByBAB
38 simplr ACBCyCBC
39 chlejb2 BCyBABCByBAByBABB=yBAB
40 38 27 39 syl2anc ACBCyCByBAByBABB=yBAB
41 37 40 mpbid ACBCyCyBABB=yBAB
42 41 ineq1d ACBCyCyBABBA=yBABA
43 inass yBABA=yBABA
44 incom ABA=AAB
45 chabs2 ACBCAAB=A
46 44 45 eqtrid ACBCABA=A
47 46 ineq2d ACBCyBABA=yBA
48 43 47 eqtrid ACBCyBABA=yBA
49 48 adantr ACBCyCyBABA=yBA
50 42 49 eqtrd ACBCyCyBABBA=yBA
51 50 oveq1d ACBCyCyBABBAB=yBAB
52 51 sseq2d ACBCyCyBAByBABBAByBAByBAB
53 31 52 sylibd ACBCyCyBABCyBABAByBAByBABBAByBAByBAB
54 53 ex ACBCyCyBABCyBABAByBAByBABBAByBAByBAB
55 54 com23 ACBCyBABCyBABAByBAByBABBAByCyBAByBAB
56 20 55 syl5 ACBCxCxABxxBAByCyBAByBAB
57 56 ralrimdv ACBCxCxABxxBAByCyBAByBAB
58 dmdbr4 ACBCA𝑀*ByCyBAByBAB
59 57 58 sylibrd ACBCxCxABxxBABA𝑀*B
60 12 59 impbid ACBCA𝑀*BxCxABxxBAB