Metamath Proof Explorer


Theorem dmdprd

Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Proof shortened by AV, 11-Jul-2019)

Ref Expression
Hypotheses dmdprd.z Z=CntzG
dmdprd.0 0˙=0G
dmdprd.k K=mrClsSubGrpG
Assertion dmdprd IVdomS=IGdomDProdSGGrpS:ISubGrpGxIyIxSxZSySxKSIx=0˙

Proof

Step Hyp Ref Expression
1 dmdprd.z Z=CntzG
2 dmdprd.0 0˙=0G
3 dmdprd.k K=mrClsSubGrpG
4 elex Sh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙SV
5 4 a1i IVdomS=ISh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙SV
6 fex S:ISubGrpGIVSV
7 6 expcom IVS:ISubGrpGSV
8 7 adantr IVdomS=IS:ISubGrpGSV
9 8 adantrd IVdomS=IS:ISubGrpGxIyIxSxZSySxKSIx=0˙SV
10 df-sbc [˙S/h]˙h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙Sh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙
11 simpr IVdomS=ISVSV
12 simpr IVdomS=Ih=Sh=S
13 12 dmeqd IVdomS=Ih=Sdomh=domS
14 simplr IVdomS=Ih=SdomS=I
15 13 14 eqtrd IVdomS=Ih=Sdomh=I
16 12 15 feq12d IVdomS=Ih=Sh:domhSubGrpGS:ISubGrpG
17 15 difeq1d IVdomS=Ih=Sdomhx=Ix
18 12 fveq1d IVdomS=Ih=Shx=Sx
19 12 fveq1d IVdomS=Ih=Shy=Sy
20 19 fveq2d IVdomS=Ih=SZhy=ZSy
21 18 20 sseq12d IVdomS=Ih=ShxZhySxZSy
22 17 21 raleqbidv IVdomS=Ih=SydomhxhxZhyyIxSxZSy
23 12 17 imaeq12d IVdomS=Ih=Shdomhx=SIx
24 23 unieqd IVdomS=Ih=Shdomhx=SIx
25 24 fveq2d IVdomS=Ih=SKhdomhx=KSIx
26 18 25 ineq12d IVdomS=Ih=ShxKhdomhx=SxKSIx
27 26 eqeq1d IVdomS=Ih=ShxKhdomhx=0˙SxKSIx=0˙
28 22 27 anbi12d IVdomS=Ih=SydomhxhxZhyhxKhdomhx=0˙yIxSxZSySxKSIx=0˙
29 15 28 raleqbidv IVdomS=Ih=SxdomhydomhxhxZhyhxKhdomhx=0˙xIyIxSxZSySxKSIx=0˙
30 16 29 anbi12d IVdomS=Ih=Sh:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙S:ISubGrpGxIyIxSxZSySxKSIx=0˙
31 30 adantlr IVdomS=ISVh=Sh:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙S:ISubGrpGxIyIxSxZSySxKSIx=0˙
32 11 31 sbcied IVdomS=ISV[˙S/h]˙h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙S:ISubGrpGxIyIxSxZSySxKSIx=0˙
33 10 32 bitr3id IVdomS=ISVSh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙S:ISubGrpGxIyIxSxZSySxKSIx=0˙
34 33 ex IVdomS=ISVSh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙S:ISubGrpGxIyIxSxZSySxKSIx=0˙
35 5 9 34 pm5.21ndd IVdomS=ISh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙S:ISubGrpGxIyIxSxZSySxKSIx=0˙
36 35 anbi2d IVdomS=IGGrpSh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙GGrpS:ISubGrpGxIyIxSxZSySxKSIx=0˙
37 df-br GdomDProdSGSdomDProd
38 fvex sxV
39 38 rgenw xdomssxV
40 ixpexg xdomssxVxdomssxV
41 39 40 ax-mp xdomssxV
42 41 mptrabex fhxdomssx|finSupp0ghgfV
43 42 rnex ranfhxdomssx|finSupp0ghgfV
44 43 rgen2w gGrpsh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgfV
45 df-dprd DProd=gGrp,sh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgf
46 45 fmpox gGrpsh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgfVDProd:gGrpg×h|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0gV
47 44 46 mpbi DProd:gGrpg×h|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0gV
48 47 fdmi domDProd=gGrpg×h|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g
49 48 eleq2i GSdomDProdGSgGrpg×h|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g
50 fveq2 g=GSubGrpg=SubGrpG
51 50 feq3d g=Gh:domhSubGrpgh:domhSubGrpG
52 fveq2 g=GCntzg=CntzG
53 52 1 eqtr4di g=GCntzg=Z
54 53 fveq1d g=GCntzghy=Zhy
55 54 sseq2d g=GhxCntzghyhxZhy
56 55 ralbidv g=GydomhxhxCntzghyydomhxhxZhy
57 50 fveq2d g=GmrClsSubGrpg=mrClsSubGrpG
58 57 3 eqtr4di g=GmrClsSubGrpg=K
59 58 fveq1d g=GmrClsSubGrpghdomhx=Khdomhx
60 59 ineq2d g=GhxmrClsSubGrpghdomhx=hxKhdomhx
61 fveq2 g=G0g=0G
62 61 2 eqtr4di g=G0g=0˙
63 62 sneqd g=G0g=0˙
64 60 63 eqeq12d g=GhxmrClsSubGrpghdomhx=0ghxKhdomhx=0˙
65 56 64 anbi12d g=GydomhxhxCntzghyhxmrClsSubGrpghdomhx=0gydomhxhxZhyhxKhdomhx=0˙
66 65 ralbidv g=GxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0gxdomhydomhxhxZhyhxKhdomhx=0˙
67 51 66 anbi12d g=Gh:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0gh:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙
68 67 abbidv g=Gh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g=h|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙
69 68 opeliunxp2 GSgGrpg×h|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0gGGrpSh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙
70 37 49 69 3bitri GdomDProdSGGrpSh|h:domhSubGrpGxdomhydomhxhxZhyhxKhdomhx=0˙
71 3anass GGrpS:ISubGrpGxIyIxSxZSySxKSIx=0˙GGrpS:ISubGrpGxIyIxSxZSySxKSIx=0˙
72 36 70 71 3bitr4g IVdomS=IGdomDProdSGGrpS:ISubGrpGxIyIxSxZSySxKSIx=0˙