Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Proof shortened by AV, 11-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmdprd.z | |
|
dmdprd.0 | |
||
dmdprd.k | |
||
Assertion | dmdprd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdprd.z | |
|
2 | dmdprd.0 | |
|
3 | dmdprd.k | |
|
4 | elex | |
|
5 | 4 | a1i | |
6 | fex | |
|
7 | 6 | expcom | |
8 | 7 | adantr | |
9 | 8 | adantrd | |
10 | df-sbc | |
|
11 | simpr | |
|
12 | simpr | |
|
13 | 12 | dmeqd | |
14 | simplr | |
|
15 | 13 14 | eqtrd | |
16 | 12 15 | feq12d | |
17 | 15 | difeq1d | |
18 | 12 | fveq1d | |
19 | 12 | fveq1d | |
20 | 19 | fveq2d | |
21 | 18 20 | sseq12d | |
22 | 17 21 | raleqbidv | |
23 | 12 17 | imaeq12d | |
24 | 23 | unieqd | |
25 | 24 | fveq2d | |
26 | 18 25 | ineq12d | |
27 | 26 | eqeq1d | |
28 | 22 27 | anbi12d | |
29 | 15 28 | raleqbidv | |
30 | 16 29 | anbi12d | |
31 | 30 | adantlr | |
32 | 11 31 | sbcied | |
33 | 10 32 | bitr3id | |
34 | 33 | ex | |
35 | 5 9 34 | pm5.21ndd | |
36 | 35 | anbi2d | |
37 | df-br | |
|
38 | fvex | |
|
39 | 38 | rgenw | |
40 | ixpexg | |
|
41 | 39 40 | ax-mp | |
42 | 41 | mptrabex | |
43 | 42 | rnex | |
44 | 43 | rgen2w | |
45 | df-dprd | |
|
46 | 45 | fmpox | |
47 | 44 46 | mpbi | |
48 | 47 | fdmi | |
49 | 48 | eleq2i | |
50 | fveq2 | |
|
51 | 50 | feq3d | |
52 | fveq2 | |
|
53 | 52 1 | eqtr4di | |
54 | 53 | fveq1d | |
55 | 54 | sseq2d | |
56 | 55 | ralbidv | |
57 | 50 | fveq2d | |
58 | 57 3 | eqtr4di | |
59 | 58 | fveq1d | |
60 | 59 | ineq2d | |
61 | fveq2 | |
|
62 | 61 2 | eqtr4di | |
63 | 62 | sneqd | |
64 | 60 63 | eqeq12d | |
65 | 56 64 | anbi12d | |
66 | 65 | ralbidv | |
67 | 51 66 | anbi12d | |
68 | 67 | abbidv | |
69 | 68 | opeliunxp2 | |
70 | 37 49 69 | 3bitri | |
71 | 3anass | |
|
72 | 36 70 71 | 3bitr4g | |