Metamath Proof Explorer


Theorem dochshpncl

Description: If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochshpncl.h H=LHypK
dochshpncl.o ˙=ocHKW
dochshpncl.u U=DVecHKW
dochshpncl.v V=BaseU
dochshpncl.y Y=LSHypU
dochshpncl.k φKHLWH
dochshpncl.x φXY
Assertion dochshpncl φ˙˙XX˙˙X=V

Proof

Step Hyp Ref Expression
1 dochshpncl.h H=LHypK
2 dochshpncl.o ˙=ocHKW
3 dochshpncl.u U=DVecHKW
4 dochshpncl.v V=BaseU
5 dochshpncl.y Y=LSHypU
6 dochshpncl.k φKHLWH
7 dochshpncl.x φXY
8 eqid LSpanU=LSpanU
9 eqid LSubSpU=LSubSpU
10 eqid LSSumU=LSSumU
11 1 3 6 dvhlmod φULMod
12 4 8 9 10 5 11 islshpsm φXYXLSubSpUXVvVXLSSumULSpanUv=V
13 7 12 mpbid φXLSubSpUXVvVXLSSumULSpanUv=V
14 13 simp3d φvVXLSSumULSpanUv=V
15 14 adantr φ˙˙XXvVXLSSumULSpanUv=V
16 id φvVφvV
17 16 adantlr φ˙˙XXvVφvV
18 17 3adant3 φ˙˙XXvVXLSSumULSpanUv=VφvV
19 9 5 11 7 lshplss φXLSubSpU
20 4 9 lssss XLSubSpUXV
21 19 20 syl φXV
22 1 3 4 2 dochocss KHLWHXVX˙˙X
23 6 21 22 syl2anc φX˙˙X
24 23 adantr φ˙˙XXX˙˙X
25 24 3ad2ant1 φ˙˙XXvVXLSSumULSpanUv=VX˙˙X
26 simp1r φ˙˙XXvVXLSSumULSpanUv=V˙˙XX
27 26 necomd φ˙˙XXvVXLSSumULSpanUv=VX˙˙X
28 df-pss X˙˙XX˙˙XX˙˙X
29 25 27 28 sylanbrc φ˙˙XXvVXLSSumULSpanUv=VX˙˙X
30 1 3 4 2 dochssv KHLWHXV˙XV
31 6 21 30 syl2anc φ˙XV
32 1 3 4 2 dochssv KHLWH˙XV˙˙XV
33 6 31 32 syl2anc φ˙˙XV
34 33 adantr φ˙˙XX˙˙XV
35 34 3ad2ant1 φ˙˙XXvVXLSSumULSpanUv=V˙˙XV
36 simp3 φ˙˙XXvVXLSSumULSpanUv=VXLSSumULSpanUv=V
37 35 36 sseqtrrd φ˙˙XXvVXLSSumULSpanUv=V˙˙XXLSSumULSpanUv
38 6 adantr φvVKHLWH
39 1 3 38 dvhlvec φvVULVec
40 19 adantr φvVXLSubSpU
41 1 3 4 9 2 dochlss KHLWH˙XV˙˙XLSubSpU
42 6 31 41 syl2anc φ˙˙XLSubSpU
43 42 adantr φvV˙˙XLSubSpU
44 simpr φvVvV
45 4 9 8 10 39 40 43 44 lsmcv φvVX˙˙X˙˙XXLSSumULSpanUv˙˙X=XLSSumULSpanUv
46 18 29 37 45 syl3anc φ˙˙XXvVXLSSumULSpanUv=V˙˙X=XLSSumULSpanUv
47 46 36 eqtrd φ˙˙XXvVXLSSumULSpanUv=V˙˙X=V
48 47 rexlimdv3a φ˙˙XXvVXLSSumULSpanUv=V˙˙X=V
49 15 48 mpd φ˙˙XX˙˙X=V
50 simpr φ˙˙X=V˙˙X=V
51 4 5 11 7 lshpne φXV
52 51 adantr φ˙˙X=VXV
53 52 necomd φ˙˙X=VVX
54 50 53 eqnetrd φ˙˙X=V˙˙XX
55 49 54 impbida φ˙˙XX˙˙X=V