Description: If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochshpncl.h | |
|
dochshpncl.o | |
||
dochshpncl.u | |
||
dochshpncl.v | |
||
dochshpncl.y | |
||
dochshpncl.k | |
||
dochshpncl.x | |
||
Assertion | dochshpncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochshpncl.h | |
|
2 | dochshpncl.o | |
|
3 | dochshpncl.u | |
|
4 | dochshpncl.v | |
|
5 | dochshpncl.y | |
|
6 | dochshpncl.k | |
|
7 | dochshpncl.x | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 3 6 | dvhlmod | |
12 | 4 8 9 10 5 11 | islshpsm | |
13 | 7 12 | mpbid | |
14 | 13 | simp3d | |
15 | 14 | adantr | |
16 | id | |
|
17 | 16 | adantlr | |
18 | 17 | 3adant3 | |
19 | 9 5 11 7 | lshplss | |
20 | 4 9 | lssss | |
21 | 19 20 | syl | |
22 | 1 3 4 2 | dochocss | |
23 | 6 21 22 | syl2anc | |
24 | 23 | adantr | |
25 | 24 | 3ad2ant1 | |
26 | simp1r | |
|
27 | 26 | necomd | |
28 | df-pss | |
|
29 | 25 27 28 | sylanbrc | |
30 | 1 3 4 2 | dochssv | |
31 | 6 21 30 | syl2anc | |
32 | 1 3 4 2 | dochssv | |
33 | 6 31 32 | syl2anc | |
34 | 33 | adantr | |
35 | 34 | 3ad2ant1 | |
36 | simp3 | |
|
37 | 35 36 | sseqtrrd | |
38 | 6 | adantr | |
39 | 1 3 38 | dvhlvec | |
40 | 19 | adantr | |
41 | 1 3 4 9 2 | dochlss | |
42 | 6 31 41 | syl2anc | |
43 | 42 | adantr | |
44 | simpr | |
|
45 | 4 9 8 10 39 40 43 44 | lsmcv | |
46 | 18 29 37 45 | syl3anc | |
47 | 46 36 | eqtrd | |
48 | 47 | rexlimdv3a | |
49 | 15 48 | mpd | |
50 | simpr | |
|
51 | 4 5 11 7 | lshpne | |
52 | 51 | adantr | |
53 | 52 | necomd | |
54 | 50 53 | eqnetrd | |
55 | 49 54 | impbida | |