| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochshpncl.h |  | 
						
							| 2 |  | dochshpncl.o |  | 
						
							| 3 |  | dochshpncl.u |  | 
						
							| 4 |  | dochshpncl.v |  | 
						
							| 5 |  | dochshpncl.y |  | 
						
							| 6 |  | dochshpncl.k |  | 
						
							| 7 |  | dochshpncl.x |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 3 6 | dvhlmod |  | 
						
							| 12 | 4 8 9 10 5 11 | islshpsm |  | 
						
							| 13 | 7 12 | mpbid |  | 
						
							| 14 | 13 | simp3d |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | id |  | 
						
							| 17 | 16 | adantlr |  | 
						
							| 18 | 17 | 3adant3 |  | 
						
							| 19 | 9 5 11 7 | lshplss |  | 
						
							| 20 | 4 9 | lssss |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 1 3 4 2 | dochocss |  | 
						
							| 23 | 6 21 22 | syl2anc |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 24 | 3ad2ant1 |  | 
						
							| 26 |  | simp1r |  | 
						
							| 27 | 26 | necomd |  | 
						
							| 28 |  | df-pss |  | 
						
							| 29 | 25 27 28 | sylanbrc |  | 
						
							| 30 | 1 3 4 2 | dochssv |  | 
						
							| 31 | 6 21 30 | syl2anc |  | 
						
							| 32 | 1 3 4 2 | dochssv |  | 
						
							| 33 | 6 31 32 | syl2anc |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | 3ad2ant1 |  | 
						
							| 36 |  | simp3 |  | 
						
							| 37 | 35 36 | sseqtrrd |  | 
						
							| 38 | 6 | adantr |  | 
						
							| 39 | 1 3 38 | dvhlvec |  | 
						
							| 40 | 19 | adantr |  | 
						
							| 41 | 1 3 4 9 2 | dochlss |  | 
						
							| 42 | 6 31 41 | syl2anc |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 4 9 8 10 39 40 43 44 | lsmcv |  | 
						
							| 46 | 18 29 37 45 | syl3anc |  | 
						
							| 47 | 46 36 | eqtrd |  | 
						
							| 48 | 47 | rexlimdv3a |  | 
						
							| 49 | 15 48 | mpd |  | 
						
							| 50 |  | simpr |  | 
						
							| 51 | 4 5 11 7 | lshpne |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 52 | necomd |  | 
						
							| 54 | 50 53 | eqnetrd |  | 
						
							| 55 | 49 54 | impbida |  |