Metamath Proof Explorer


Theorem dprdcntz2

Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprdcntz2.1 φGdomDProdS
dprdcntz2.2 φdomS=I
dprdcntz2.c φCI
dprdcntz2.d φDI
dprdcntz2.i φCD=
dprdcntz2.z Z=CntzG
Assertion dprdcntz2 φGDProdSCZGDProdSD

Proof

Step Hyp Ref Expression
1 dprdcntz2.1 φGdomDProdS
2 dprdcntz2.2 φdomS=I
3 dprdcntz2.c φCI
4 dprdcntz2.d φDI
5 dprdcntz2.i φCD=
6 dprdcntz2.z Z=CntzG
7 1 2 3 dprdres φGdomDProdSCGDProdSCGDProdS
8 7 simpld φGdomDProdSC
9 dmres domSC=CdomS
10 3 2 sseqtrrd φCdomS
11 df-ss CdomSCdomS=C
12 10 11 sylib φCdomS=C
13 9 12 eqtrid φdomSC=C
14 dprdgrp GdomDProdSGGrp
15 1 14 syl φGGrp
16 eqid BaseG=BaseG
17 16 dprdssv GDProdSDBaseG
18 16 6 cntzsubg GGrpGDProdSDBaseGZGDProdSDSubGrpG
19 15 17 18 sylancl φZGDProdSDSubGrpG
20 fvres xCSCx=Sx
21 20 adantl φxCSCx=Sx
22 1 2 4 dprdres φGdomDProdSDGDProdSDGDProdS
23 22 simpld φGdomDProdSD
24 23 adantr φxCGdomDProdSD
25 dprdsubg GdomDProdSDGDProdSDSubGrpG
26 24 25 syl φxCGDProdSDSubGrpG
27 3 sselda φxCxI
28 1 2 dprdf2 φS:ISubGrpG
29 28 ffvelcdmda φxISxSubGrpG
30 27 29 syldan φxCSxSubGrpG
31 dmres domSD=DdomS
32 4 2 sseqtrrd φDdomS
33 df-ss DdomSDdomS=D
34 32 33 sylib φDdomS=D
35 31 34 eqtrid φdomSD=D
36 35 adantr φxCdomSD=D
37 15 adantr φxCGGrp
38 16 subgss SxSubGrpGSxBaseG
39 30 38 syl φxCSxBaseG
40 16 6 cntzsubg GGrpSxBaseGZSxSubGrpG
41 37 39 40 syl2anc φxCZSxSubGrpG
42 fvres yDSDy=Sy
43 42 adantl φxCyDSDy=Sy
44 1 ad2antrr φxCyDGdomDProdS
45 2 ad2antrr φxCyDdomS=I
46 4 adantr φxCDI
47 46 sselda φxCyDyI
48 27 adantr φxCyDxI
49 simpr φxCyDyD
50 noel ¬x
51 elin xCDxCxD
52 5 eleq2d φxCDx
53 51 52 bitr3id φxCxDx
54 50 53 mtbiri φ¬xCxD
55 imnan xC¬xD¬xCxD
56 54 55 sylibr φxC¬xD
57 56 imp φxC¬xD
58 57 adantr φxCyD¬xD
59 nelne2 yD¬xDyx
60 49 58 59 syl2anc φxCyDyx
61 44 45 47 48 60 6 dprdcntz φxCyDSyZSx
62 43 61 eqsstrd φxCyDSDyZSx
63 24 36 41 62 dprdlub φxCGDProdSDZSx
64 6 26 30 63 cntzrecd φxCSxZGDProdSD
65 21 64 eqsstrd φxCSCxZGDProdSD
66 8 13 19 65 dprdlub φGDProdSCZGDProdSD