Metamath Proof Explorer


Theorem dprdcntz2

Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprdcntz2.1 φ G dom DProd S
dprdcntz2.2 φ dom S = I
dprdcntz2.c φ C I
dprdcntz2.d φ D I
dprdcntz2.i φ C D =
dprdcntz2.z Z = Cntz G
Assertion dprdcntz2 φ G DProd S C Z G DProd S D

Proof

Step Hyp Ref Expression
1 dprdcntz2.1 φ G dom DProd S
2 dprdcntz2.2 φ dom S = I
3 dprdcntz2.c φ C I
4 dprdcntz2.d φ D I
5 dprdcntz2.i φ C D =
6 dprdcntz2.z Z = Cntz G
7 1 2 3 dprdres φ G dom DProd S C G DProd S C G DProd S
8 7 simpld φ G dom DProd S C
9 dmres dom S C = C dom S
10 3 2 sseqtrrd φ C dom S
11 df-ss C dom S C dom S = C
12 10 11 sylib φ C dom S = C
13 9 12 syl5eq φ dom S C = C
14 dprdgrp G dom DProd S G Grp
15 1 14 syl φ G Grp
16 eqid Base G = Base G
17 16 dprdssv G DProd S D Base G
18 16 6 cntzsubg G Grp G DProd S D Base G Z G DProd S D SubGrp G
19 15 17 18 sylancl φ Z G DProd S D SubGrp G
20 fvres x C S C x = S x
21 20 adantl φ x C S C x = S x
22 1 2 4 dprdres φ G dom DProd S D G DProd S D G DProd S
23 22 simpld φ G dom DProd S D
24 23 adantr φ x C G dom DProd S D
25 dprdsubg G dom DProd S D G DProd S D SubGrp G
26 24 25 syl φ x C G DProd S D SubGrp G
27 3 sselda φ x C x I
28 1 2 dprdf2 φ S : I SubGrp G
29 28 ffvelrnda φ x I S x SubGrp G
30 27 29 syldan φ x C S x SubGrp G
31 dmres dom S D = D dom S
32 4 2 sseqtrrd φ D dom S
33 df-ss D dom S D dom S = D
34 32 33 sylib φ D dom S = D
35 31 34 syl5eq φ dom S D = D
36 35 adantr φ x C dom S D = D
37 15 adantr φ x C G Grp
38 16 subgss S x SubGrp G S x Base G
39 30 38 syl φ x C S x Base G
40 16 6 cntzsubg G Grp S x Base G Z S x SubGrp G
41 37 39 40 syl2anc φ x C Z S x SubGrp G
42 fvres y D S D y = S y
43 42 adantl φ x C y D S D y = S y
44 1 ad2antrr φ x C y D G dom DProd S
45 2 ad2antrr φ x C y D dom S = I
46 4 adantr φ x C D I
47 46 sselda φ x C y D y I
48 27 adantr φ x C y D x I
49 simpr φ x C y D y D
50 noel ¬ x
51 elin x C D x C x D
52 5 eleq2d φ x C D x
53 51 52 syl5bbr φ x C x D x
54 50 53 mtbiri φ ¬ x C x D
55 imnan x C ¬ x D ¬ x C x D
56 54 55 sylibr φ x C ¬ x D
57 56 imp φ x C ¬ x D
58 57 adantr φ x C y D ¬ x D
59 nelne2 y D ¬ x D y x
60 49 58 59 syl2anc φ x C y D y x
61 44 45 47 48 60 6 dprdcntz φ x C y D S y Z S x
62 43 61 eqsstrd φ x C y D S D y Z S x
63 24 36 41 62 dprdlub φ x C G DProd S D Z S x
64 6 26 30 63 cntzrecd φ x C S x Z G DProd S D
65 21 64 eqsstrd φ x C S C x Z G DProd S D
66 8 13 19 65 dprdlub φ G DProd S C Z G DProd S D