Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprdcntz2.1 | |
|
dprdcntz2.2 | |
||
dprdcntz2.c | |
||
dprdcntz2.d | |
||
dprdcntz2.i | |
||
dprdcntz2.z | |
||
Assertion | dprdcntz2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdcntz2.1 | |
|
2 | dprdcntz2.2 | |
|
3 | dprdcntz2.c | |
|
4 | dprdcntz2.d | |
|
5 | dprdcntz2.i | |
|
6 | dprdcntz2.z | |
|
7 | 1 2 3 | dprdres | |
8 | 7 | simpld | |
9 | dmres | |
|
10 | 3 2 | sseqtrrd | |
11 | df-ss | |
|
12 | 10 11 | sylib | |
13 | 9 12 | eqtrid | |
14 | dprdgrp | |
|
15 | 1 14 | syl | |
16 | eqid | |
|
17 | 16 | dprdssv | |
18 | 16 6 | cntzsubg | |
19 | 15 17 18 | sylancl | |
20 | fvres | |
|
21 | 20 | adantl | |
22 | 1 2 4 | dprdres | |
23 | 22 | simpld | |
24 | 23 | adantr | |
25 | dprdsubg | |
|
26 | 24 25 | syl | |
27 | 3 | sselda | |
28 | 1 2 | dprdf2 | |
29 | 28 | ffvelcdmda | |
30 | 27 29 | syldan | |
31 | dmres | |
|
32 | 4 2 | sseqtrrd | |
33 | df-ss | |
|
34 | 32 33 | sylib | |
35 | 31 34 | eqtrid | |
36 | 35 | adantr | |
37 | 15 | adantr | |
38 | 16 | subgss | |
39 | 30 38 | syl | |
40 | 16 6 | cntzsubg | |
41 | 37 39 40 | syl2anc | |
42 | fvres | |
|
43 | 42 | adantl | |
44 | 1 | ad2antrr | |
45 | 2 | ad2antrr | |
46 | 4 | adantr | |
47 | 46 | sselda | |
48 | 27 | adantr | |
49 | simpr | |
|
50 | noel | |
|
51 | elin | |
|
52 | 5 | eleq2d | |
53 | 51 52 | bitr3id | |
54 | 50 53 | mtbiri | |
55 | imnan | |
|
56 | 54 55 | sylibr | |
57 | 56 | imp | |
58 | 57 | adantr | |
59 | nelne2 | |
|
60 | 49 58 59 | syl2anc | |
61 | 44 45 47 48 60 6 | dprdcntz | |
62 | 43 61 | eqsstrd | |
63 | 24 36 41 62 | dprdlub | |
64 | 6 26 30 63 | cntzrecd | |
65 | 21 64 | eqsstrd | |
66 | 8 13 19 65 | dprdlub | |