Metamath Proof Explorer


Theorem dprdsn

Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Assertion dprdsn AVSSubGrpGGdomDProdASGDProdAS=S

Proof

Step Hyp Ref Expression
1 eqid CntzG=CntzG
2 eqid 0G=0G
3 eqid mrClsSubGrpG=mrClsSubGrpG
4 subgrcl SSubGrpGGGrp
5 4 adantl AVSSubGrpGGGrp
6 snex AV
7 6 a1i AVSSubGrpGAV
8 f1osng AVSSubGrpGAS:A1-1 ontoS
9 f1of AS:A1-1 ontoSAS:AS
10 8 9 syl AVSSubGrpGAS:AS
11 simpr AVSSubGrpGSSubGrpG
12 11 snssd AVSSubGrpGSSubGrpG
13 10 12 fssd AVSSubGrpGAS:ASubGrpG
14 simpr1 AVSSubGrpGxAyAxyxA
15 elsni xAx=A
16 14 15 syl AVSSubGrpGxAyAxyx=A
17 simpr2 AVSSubGrpGxAyAxyyA
18 elsni yAy=A
19 17 18 syl AVSSubGrpGxAyAxyy=A
20 16 19 eqtr4d AVSSubGrpGxAyAxyx=y
21 simpr3 AVSSubGrpGxAyAxyxy
22 20 21 pm2.21ddne AVSSubGrpGxAyAxyASxCntzGASy
23 5 adantr AVSSubGrpGxAGGrp
24 eqid BaseG=BaseG
25 24 subgacs GGrpSubGrpGACSBaseG
26 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
27 23 25 26 3syl AVSSubGrpGxASubGrpGMooreBaseG
28 15 adantl AVSSubGrpGxAx=A
29 28 sneqd AVSSubGrpGxAx=A
30 29 difeq2d AVSSubGrpGxAAx=AA
31 difid AA=
32 30 31 eqtrdi AVSSubGrpGxAAx=
33 32 imaeq2d AVSSubGrpGxAASAx=AS
34 ima0 AS=
35 33 34 eqtrdi AVSSubGrpGxAASAx=
36 35 unieqd AVSSubGrpGxAASAx=
37 uni0 =
38 36 37 eqtrdi AVSSubGrpGxAASAx=
39 0ss 0G
40 39 a1i AVSSubGrpGxA0G
41 38 40 eqsstrd AVSSubGrpGxAASAx0G
42 2 0subg GGrp0GSubGrpG
43 23 42 syl AVSSubGrpGxA0GSubGrpG
44 3 mrcsscl SubGrpGMooreBaseGASAx0G0GSubGrpGmrClsSubGrpGASAx0G
45 27 41 43 44 syl3anc AVSSubGrpGxAmrClsSubGrpGASAx0G
46 2 subg0cl SSubGrpG0GS
47 46 ad2antlr AVSSubGrpGxA0GS
48 15 fveq2d xAASx=ASA
49 fvsng AVSSubGrpGASA=S
50 48 49 sylan9eqr AVSSubGrpGxAASx=S
51 47 50 eleqtrrd AVSSubGrpGxA0GASx
52 51 snssd AVSSubGrpGxA0GASx
53 45 52 sstrd AVSSubGrpGxAmrClsSubGrpGASAxASx
54 sseqin2 mrClsSubGrpGASAxASxASxmrClsSubGrpGASAx=mrClsSubGrpGASAx
55 53 54 sylib AVSSubGrpGxAASxmrClsSubGrpGASAx=mrClsSubGrpGASAx
56 55 45 eqsstrd AVSSubGrpGxAASxmrClsSubGrpGASAx0G
57 1 2 3 5 7 13 22 56 dmdprdd AVSSubGrpGGdomDProdAS
58 3 dprdspan GdomDProdASGDProdAS=mrClsSubGrpGranAS
59 57 58 syl AVSSubGrpGGDProdAS=mrClsSubGrpGranAS
60 rnsnopg AVranAS=S
61 60 adantr AVSSubGrpGranAS=S
62 61 unieqd AVSSubGrpGranAS=S
63 unisng SSubGrpGS=S
64 63 adantl AVSSubGrpGS=S
65 62 64 eqtrd AVSSubGrpGranAS=S
66 65 fveq2d AVSSubGrpGmrClsSubGrpGranAS=mrClsSubGrpGS
67 5 25 26 3syl AVSSubGrpGSubGrpGMooreBaseG
68 3 mrcid SubGrpGMooreBaseGSSubGrpGmrClsSubGrpGS=S
69 67 68 sylancom AVSSubGrpGmrClsSubGrpGS=S
70 66 69 eqtrd AVSSubGrpGmrClsSubGrpGranAS=S
71 59 70 eqtrd AVSSubGrpGGDProdAS=S
72 57 71 jca AVSSubGrpGGdomDProdASGDProdAS=S