Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | dprdsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | subgrcl | |
|
5 | 4 | adantl | |
6 | snex | |
|
7 | 6 | a1i | |
8 | f1osng | |
|
9 | f1of | |
|
10 | 8 9 | syl | |
11 | simpr | |
|
12 | 11 | snssd | |
13 | 10 12 | fssd | |
14 | simpr1 | |
|
15 | elsni | |
|
16 | 14 15 | syl | |
17 | simpr2 | |
|
18 | elsni | |
|
19 | 17 18 | syl | |
20 | 16 19 | eqtr4d | |
21 | simpr3 | |
|
22 | 20 21 | pm2.21ddne | |
23 | 5 | adantr | |
24 | eqid | |
|
25 | 24 | subgacs | |
26 | acsmre | |
|
27 | 23 25 26 | 3syl | |
28 | 15 | adantl | |
29 | 28 | sneqd | |
30 | 29 | difeq2d | |
31 | difid | |
|
32 | 30 31 | eqtrdi | |
33 | 32 | imaeq2d | |
34 | ima0 | |
|
35 | 33 34 | eqtrdi | |
36 | 35 | unieqd | |
37 | uni0 | |
|
38 | 36 37 | eqtrdi | |
39 | 0ss | |
|
40 | 39 | a1i | |
41 | 38 40 | eqsstrd | |
42 | 2 | 0subg | |
43 | 23 42 | syl | |
44 | 3 | mrcsscl | |
45 | 27 41 43 44 | syl3anc | |
46 | 2 | subg0cl | |
47 | 46 | ad2antlr | |
48 | 15 | fveq2d | |
49 | fvsng | |
|
50 | 48 49 | sylan9eqr | |
51 | 47 50 | eleqtrrd | |
52 | 51 | snssd | |
53 | 45 52 | sstrd | |
54 | sseqin2 | |
|
55 | 53 54 | sylib | |
56 | 55 45 | eqsstrd | |
57 | 1 2 3 5 7 13 22 56 | dmdprdd | |
58 | 3 | dprdspan | |
59 | 57 58 | syl | |
60 | rnsnopg | |
|
61 | 60 | adantr | |
62 | 61 | unieqd | |
63 | unisng | |
|
64 | 63 | adantl | |
65 | 62 64 | eqtrd | |
66 | 65 | fveq2d | |
67 | 5 25 26 | 3syl | |
68 | 3 | mrcid | |
69 | 67 68 | sylancom | |
70 | 66 69 | eqtrd | |
71 | 59 70 | eqtrd | |
72 | 57 71 | jca | |