Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efabl.1 | |
|
efabl.2 | |
||
efabl.3 | |
||
efabl.4 | |
||
Assertion | efabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efabl.1 | |
|
2 | efabl.2 | |
|
3 | efabl.3 | |
|
4 | efabl.4 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | simp1 | |
|
10 | simp2 | |
|
11 | eqid | |
|
12 | 11 | subgbas | |
13 | 4 12 | syl | |
14 | 13 | 3ad2ant1 | |
15 | 10 14 | eleqtrrd | |
16 | simp3 | |
|
17 | 16 14 | eleqtrrd | |
18 | 3 4 | jca | |
19 | 1 | efgh | |
20 | 18 19 | syl3an1 | |
21 | cnfldadd | |
|
22 | 11 21 | ressplusg | |
23 | 4 22 | syl | |
24 | 23 | 3ad2ant1 | |
25 | 24 | oveqd | |
26 | 25 | fveq2d | |
27 | mptexg | |
|
28 | 1 27 | eqeltrid | |
29 | rnexg | |
|
30 | 4 28 29 | 3syl | |
31 | eqid | |
|
32 | cnfldmul | |
|
33 | 31 32 | mgpplusg | |
34 | 2 33 | ressplusg | |
35 | 30 34 | syl | |
36 | 35 | 3ad2ant1 | |
37 | 36 | oveqd | |
38 | 20 26 37 | 3eqtr3d | |
39 | 9 15 17 38 | syl3anc | |
40 | fvex | |
|
41 | 40 1 | fnmpti | |
42 | dffn4 | |
|
43 | 41 42 | mpbi | |
44 | eqidd | |
|
45 | eff | |
|
46 | 45 | a1i | |
47 | 3 | adantr | |
48 | cnfldbas | |
|
49 | 48 | subgss | |
50 | 4 49 | syl | |
51 | 50 | sselda | |
52 | 47 51 | mulcld | |
53 | 46 52 | ffvelcdmd | |
54 | 53 | ralrimiva | |
55 | 1 | rnmptss | |
56 | 31 48 | mgpbas | |
57 | 2 56 | ressbas2 | |
58 | 54 55 57 | 3syl | |
59 | 44 13 58 | foeq123d | |
60 | 43 59 | mpbii | |
61 | cnring | |
|
62 | ringabl | |
|
63 | 61 62 | ax-mp | |
64 | 11 | subgabl | |
65 | 63 4 64 | sylancr | |
66 | 5 6 7 8 39 60 65 | ghmabl | |