Metamath Proof Explorer


Theorem efabl

Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses efabl.1 F=xXeAx
efabl.2 G=mulGrpfld𝑠ranF
efabl.3 φA
efabl.4 φXSubGrpfld
Assertion efabl φGAbel

Proof

Step Hyp Ref Expression
1 efabl.1 F=xXeAx
2 efabl.2 G=mulGrpfld𝑠ranF
3 efabl.3 φA
4 efabl.4 φXSubGrpfld
5 eqid Basefld𝑠X=Basefld𝑠X
6 eqid BaseG=BaseG
7 eqid +fld𝑠X=+fld𝑠X
8 eqid +G=+G
9 simp1 φxBasefld𝑠XyBasefld𝑠Xφ
10 simp2 φxBasefld𝑠XyBasefld𝑠XxBasefld𝑠X
11 eqid fld𝑠X=fld𝑠X
12 11 subgbas XSubGrpfldX=Basefld𝑠X
13 4 12 syl φX=Basefld𝑠X
14 13 3ad2ant1 φxBasefld𝑠XyBasefld𝑠XX=Basefld𝑠X
15 10 14 eleqtrrd φxBasefld𝑠XyBasefld𝑠XxX
16 simp3 φxBasefld𝑠XyBasefld𝑠XyBasefld𝑠X
17 16 14 eleqtrrd φxBasefld𝑠XyBasefld𝑠XyX
18 3 4 jca φAXSubGrpfld
19 1 efgh AXSubGrpfldxXyXFx+y=FxFy
20 18 19 syl3an1 φxXyXFx+y=FxFy
21 cnfldadd +=+fld
22 11 21 ressplusg XSubGrpfld+=+fld𝑠X
23 4 22 syl φ+=+fld𝑠X
24 23 3ad2ant1 φxXyX+=+fld𝑠X
25 24 oveqd φxXyXx+y=x+fld𝑠Xy
26 25 fveq2d φxXyXFx+y=Fx+fld𝑠Xy
27 mptexg XSubGrpfldxXeAxV
28 1 27 eqeltrid XSubGrpfldFV
29 rnexg FVranFV
30 4 28 29 3syl φranFV
31 eqid mulGrpfld=mulGrpfld
32 cnfldmul ×=fld
33 31 32 mgpplusg ×=+mulGrpfld
34 2 33 ressplusg ranFV×=+G
35 30 34 syl φ×=+G
36 35 3ad2ant1 φxXyX×=+G
37 36 oveqd φxXyXFxFy=Fx+GFy
38 20 26 37 3eqtr3d φxXyXFx+fld𝑠Xy=Fx+GFy
39 9 15 17 38 syl3anc φxBasefld𝑠XyBasefld𝑠XFx+fld𝑠Xy=Fx+GFy
40 fvex eAxV
41 40 1 fnmpti FFnX
42 dffn4 FFnXF:XontoranF
43 41 42 mpbi F:XontoranF
44 eqidd φF=F
45 eff exp:
46 45 a1i φxXexp:
47 3 adantr φxXA
48 cnfldbas =Basefld
49 48 subgss XSubGrpfldX
50 4 49 syl φX
51 50 sselda φxXx
52 47 51 mulcld φxXAx
53 46 52 ffvelcdmd φxXeAx
54 53 ralrimiva φxXeAx
55 1 rnmptss xXeAxranF
56 31 48 mgpbas =BasemulGrpfld
57 2 56 ressbas2 ranFranF=BaseG
58 54 55 57 3syl φranF=BaseG
59 44 13 58 foeq123d φF:XontoranFF:Basefld𝑠XontoBaseG
60 43 59 mpbii φF:Basefld𝑠XontoBaseG
61 cnring fldRing
62 ringabl fldRingfldAbel
63 61 62 ax-mp fldAbel
64 11 subgabl fldAbelXSubGrpfldfld𝑠XAbel
65 63 4 64 sylancr φfld𝑠XAbel
66 5 6 7 8 39 60 65 ghmabl φGAbel