| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efabl.1 |
|
| 2 |
|
efabl.2 |
|
| 3 |
|
efabl.3 |
|
| 4 |
|
efabl.4 |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
simp1 |
|
| 10 |
|
simp2 |
|
| 11 |
|
eqid |
|
| 12 |
11
|
subgbas |
|
| 13 |
4 12
|
syl |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
10 14
|
eleqtrrd |
|
| 16 |
|
simp3 |
|
| 17 |
16 14
|
eleqtrrd |
|
| 18 |
3 4
|
jca |
|
| 19 |
1
|
efgh |
|
| 20 |
18 19
|
syl3an1 |
|
| 21 |
|
cnfldadd |
|
| 22 |
11 21
|
ressplusg |
|
| 23 |
4 22
|
syl |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
24
|
oveqd |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
mptexg |
|
| 28 |
1 27
|
eqeltrid |
|
| 29 |
|
rnexg |
|
| 30 |
|
eqid |
|
| 31 |
|
cnfldmul |
|
| 32 |
30 31
|
mgpplusg |
|
| 33 |
2 32
|
ressplusg |
|
| 34 |
4 28 29 33
|
4syl |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
35
|
oveqd |
|
| 37 |
20 26 36
|
3eqtr3d |
|
| 38 |
9 15 17 37
|
syl3anc |
|
| 39 |
|
fvex |
|
| 40 |
39 1
|
fnmpti |
|
| 41 |
|
dffn4 |
|
| 42 |
40 41
|
mpbi |
|
| 43 |
|
eqidd |
|
| 44 |
|
eff |
|
| 45 |
44
|
a1i |
|
| 46 |
3
|
adantr |
|
| 47 |
|
cnfldbas |
|
| 48 |
47
|
subgss |
|
| 49 |
4 48
|
syl |
|
| 50 |
49
|
sselda |
|
| 51 |
46 50
|
mulcld |
|
| 52 |
45 51
|
ffvelcdmd |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
1
|
rnmptss |
|
| 55 |
30 47
|
mgpbas |
|
| 56 |
2 55
|
ressbas2 |
|
| 57 |
53 54 56
|
3syl |
|
| 58 |
43 13 57
|
foeq123d |
|
| 59 |
42 58
|
mpbii |
|
| 60 |
|
cnring |
|
| 61 |
|
ringabl |
|
| 62 |
60 61
|
ax-mp |
|
| 63 |
11
|
subgabl |
|
| 64 |
62 4 63
|
sylancr |
|
| 65 |
5 6 7 8 38 59 64
|
ghmabl |
|