Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Mario Carneiro, 22-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | eldiophb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dioph | |
|
2 | 1 | dmmptss | |
3 | elfvdm | |
|
4 | 2 3 | sselid | |
5 | fveq2 | |
|
6 | eqidd | |
|
7 | oveq2 | |
|
8 | 7 | reseq2d | |
9 | 8 | eqeq2d | |
10 | 9 | anbi1d | |
11 | 10 | rexbidv | |
12 | 11 | abbidv | |
13 | 5 6 12 | mpoeq123dv | |
14 | 13 | rneqd | |
15 | ovex | |
|
16 | 15 | pwex | |
17 | eqid | |
|
18 | 17 | rnmpo | |
19 | elmapi | |
|
20 | fzss2 | |
|
21 | fssres | |
|
22 | 19 20 21 | syl2anr | |
23 | nn0ex | |
|
24 | ovex | |
|
25 | 23 24 | elmap | |
26 | 22 25 | sylibr | |
27 | eleq1 | |
|
28 | 27 | adantr | |
29 | 26 28 | syl5ibrcom | |
30 | 29 | rexlimdva | |
31 | 30 | abssdv | |
32 | 15 | elpw2 | |
33 | 31 32 | sylibr | |
34 | eleq1 | |
|
35 | 33 34 | syl5ibrcom | |
36 | 35 | rexlimdvw | |
37 | 36 | rexlimiv | |
38 | 37 | abssi | |
39 | 18 38 | eqsstri | |
40 | 16 39 | ssexi | |
41 | 14 1 40 | fvmpt | |
42 | 41 | eleq2d | |
43 | ovex | |
|
44 | 43 | abrexex | |
45 | simpl | |
|
46 | 45 | reximi | |
47 | 46 | ss2abi | |
48 | 44 47 | ssexi | |
49 | 17 48 | elrnmpo | |
50 | 42 49 | bitrdi | |
51 | 4 50 | biadanii | |