Metamath Proof Explorer


Theorem eldiophb

Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Assertion eldiophb DDiophNN0kNpmzPoly1kD=t|u01kt=u1Npu=0

Proof

Step Hyp Ref Expression
1 df-dioph Dioph=n0rankn,pmzPoly1kt|u01kt=u1npu=0
2 1 dmmptss domDioph0
3 elfvdm DDiophNNdomDioph
4 2 3 sselid DDiophNN0
5 fveq2 n=Nn=N
6 eqidd n=NmzPoly1k=mzPoly1k
7 oveq2 n=N1n=1N
8 7 reseq2d n=Nu1n=u1N
9 8 eqeq2d n=Nt=u1nt=u1N
10 9 anbi1d n=Nt=u1npu=0t=u1Npu=0
11 10 rexbidv n=Nu01kt=u1npu=0u01kt=u1Npu=0
12 11 abbidv n=Nt|u01kt=u1npu=0=t|u01kt=u1Npu=0
13 5 6 12 mpoeq123dv n=Nkn,pmzPoly1kt|u01kt=u1npu=0=kN,pmzPoly1kt|u01kt=u1Npu=0
14 13 rneqd n=Nrankn,pmzPoly1kt|u01kt=u1npu=0=rankN,pmzPoly1kt|u01kt=u1Npu=0
15 ovex 01NV
16 15 pwex 𝒫01NV
17 eqid kN,pmzPoly1kt|u01kt=u1Npu=0=kN,pmzPoly1kt|u01kt=u1Npu=0
18 17 rnmpo rankN,pmzPoly1kt|u01kt=u1Npu=0=d|kNpmzPoly1kd=t|u01kt=u1Npu=0
19 elmapi u01ku:1k0
20 fzss2 kN1N1k
21 fssres u:1k01N1ku1N:1N0
22 19 20 21 syl2anr kNu01ku1N:1N0
23 nn0ex 0V
24 ovex 1NV
25 23 24 elmap u1N01Nu1N:1N0
26 22 25 sylibr kNu01ku1N01N
27 eleq1 t=u1Nt01Nu1N01N
28 27 adantr t=u1Npu=0t01Nu1N01N
29 26 28 syl5ibrcom kNu01kt=u1Npu=0t01N
30 29 rexlimdva kNu01kt=u1Npu=0t01N
31 30 abssdv kNt|u01kt=u1Npu=001N
32 15 elpw2 t|u01kt=u1Npu=0𝒫01Nt|u01kt=u1Npu=001N
33 31 32 sylibr kNt|u01kt=u1Npu=0𝒫01N
34 eleq1 d=t|u01kt=u1Npu=0d𝒫01Nt|u01kt=u1Npu=0𝒫01N
35 33 34 syl5ibrcom kNd=t|u01kt=u1Npu=0d𝒫01N
36 35 rexlimdvw kNpmzPoly1kd=t|u01kt=u1Npu=0d𝒫01N
37 36 rexlimiv kNpmzPoly1kd=t|u01kt=u1Npu=0d𝒫01N
38 37 abssi d|kNpmzPoly1kd=t|u01kt=u1Npu=0𝒫01N
39 18 38 eqsstri rankN,pmzPoly1kt|u01kt=u1Npu=0𝒫01N
40 16 39 ssexi rankN,pmzPoly1kt|u01kt=u1Npu=0V
41 14 1 40 fvmpt N0DiophN=rankN,pmzPoly1kt|u01kt=u1Npu=0
42 41 eleq2d N0DDiophNDrankN,pmzPoly1kt|u01kt=u1Npu=0
43 ovex 01kV
44 43 abrexex t|u01kt=u1NV
45 simpl t=u1Npu=0t=u1N
46 45 reximi u01kt=u1Npu=0u01kt=u1N
47 46 ss2abi t|u01kt=u1Npu=0t|u01kt=u1N
48 44 47 ssexi t|u01kt=u1Npu=0V
49 17 48 elrnmpo DrankN,pmzPoly1kt|u01kt=u1Npu=0kNpmzPoly1kD=t|u01kt=u1Npu=0
50 42 49 bitrdi N0DDiophNkNpmzPoly1kD=t|u01kt=u1Npu=0
51 4 50 biadanii DDiophNN0kNpmzPoly1kD=t|u01kt=u1Npu=0