Metamath Proof Explorer


Theorem erngdvlem3

Description: Lemma for eringring . (Contributed by NM, 6-Aug-2013)

Ref Expression
Hypotheses ernggrp.h H=LHypK
ernggrp.d D=EDRingKW
erngdv.b B=BaseK
erngdv.t T=LTrnKW
erngdv.e E=TEndoKW
erngdv.p P=aE,bEfTafbf
erngdv.o 0˙=fTIB
erngdv.i I=aEfTaf-1
erngrnglem.m +˙=aE,bEab
Assertion erngdvlem3 KHLWHDRing

Proof

Step Hyp Ref Expression
1 ernggrp.h H=LHypK
2 ernggrp.d D=EDRingKW
3 erngdv.b B=BaseK
4 erngdv.t T=LTrnKW
5 erngdv.e E=TEndoKW
6 erngdv.p P=aE,bEfTafbf
7 erngdv.o 0˙=fTIB
8 erngdv.i I=aEfTaf-1
9 erngrnglem.m +˙=aE,bEab
10 eqid BaseD=BaseD
11 1 4 5 2 10 erngbase KHLWHBaseD=E
12 11 eqcomd KHLWHE=BaseD
13 eqid +D=+D
14 1 4 5 2 13 erngfplus KHLWH+D=aE,bEfTafbf
15 6 14 eqtr4id KHLWHP=+D
16 eqid D=D
17 1 4 5 2 16 erngfmul KHLWHD=aE,bEab
18 9 17 eqtr4id KHLWH+˙=D
19 1 2 3 4 5 6 7 8 erngdvlem1 KHLWHDGrp
20 18 oveqd KHLWHs+˙t=sDt
21 20 3ad2ant1 KHLWHsEtEs+˙t=sDt
22 1 4 5 2 16 erngmul KHLWHsEtEsDt=st
23 22 3impb KHLWHsEtEsDt=st
24 21 23 eqtrd KHLWHsEtEs+˙t=st
25 1 5 tendococl KHLWHsEtEstE
26 24 25 eqeltrd KHLWHsEtEs+˙tE
27 coass stu=stu
28 18 oveqd KHLWHs+˙t+˙u=s+˙tDu
29 28 adantr KHLWHsEtEuEs+˙t+˙u=s+˙tDu
30 simpl KHLWHsEtEuEKHLWH
31 26 3adant3r3 KHLWHsEtEuEs+˙tE
32 simpr3 KHLWHsEtEuEuE
33 1 4 5 2 16 erngmul KHLWHs+˙tEuEs+˙tDu=s+˙tu
34 30 31 32 33 syl12anc KHLWHsEtEuEs+˙tDu=s+˙tu
35 18 oveqdr KHLWHsEtEuEs+˙t=sDt
36 22 3adantr3 KHLWHsEtEuEsDt=st
37 35 36 eqtrd KHLWHsEtEuEs+˙t=st
38 37 coeq1d KHLWHsEtEuEs+˙tu=stu
39 29 34 38 3eqtrd KHLWHsEtEuEs+˙t+˙u=stu
40 18 oveqd KHLWHs+˙t+˙u=sDt+˙u
41 40 adantr KHLWHsEtEuEs+˙t+˙u=sDt+˙u
42 simpr1 KHLWHsEtEuEsE
43 18 oveqdr KHLWHsEtEuEt+˙u=tDu
44 1 4 5 2 16 erngmul KHLWHtEuEtDu=tu
45 44 3adantr1 KHLWHsEtEuEtDu=tu
46 43 45 eqtrd KHLWHsEtEuEt+˙u=tu
47 1 5 tendococl KHLWHtEuEtuE
48 47 3adant3r1 KHLWHsEtEuEtuE
49 46 48 eqeltrd KHLWHsEtEuEt+˙uE
50 1 4 5 2 16 erngmul KHLWHsEt+˙uEsDt+˙u=st+˙u
51 30 42 49 50 syl12anc KHLWHsEtEuEsDt+˙u=st+˙u
52 46 coeq2d KHLWHsEtEuEst+˙u=stu
53 41 51 52 3eqtrd KHLWHsEtEuEs+˙t+˙u=stu
54 27 39 53 3eqtr4a KHLWHsEtEuEs+˙t+˙u=s+˙t+˙u
55 1 4 5 6 tendodi1 KHLWHsEtEuEstPu=stPsu
56 18 oveqd KHLWHs+˙tPu=sDtPu
57 56 adantr KHLWHsEtEuEs+˙tPu=sDtPu
58 1 4 5 6 tendoplcl KHLWHtEuEtPuE
59 58 3adant3r1 KHLWHsEtEuEtPuE
60 1 4 5 2 16 erngmul KHLWHsEtPuEsDtPu=stPu
61 30 42 59 60 syl12anc KHLWHsEtEuEsDtPu=stPu
62 57 61 eqtrd KHLWHsEtEuEs+˙tPu=stPu
63 18 oveqdr KHLWHsEtEuEs+˙u=sDu
64 1 4 5 2 16 erngmul KHLWHsEuEsDu=su
65 64 3adantr2 KHLWHsEtEuEsDu=su
66 63 65 eqtrd KHLWHsEtEuEs+˙u=su
67 37 66 oveq12d KHLWHsEtEuEs+˙tPs+˙u=stPsu
68 55 62 67 3eqtr4d KHLWHsEtEuEs+˙tPu=s+˙tPs+˙u
69 1 4 5 6 tendodi2 KHLWHsEtEuEsPtu=suPtu
70 18 oveqd KHLWHsPt+˙u=sPtDu
71 70 adantr KHLWHsEtEuEsPt+˙u=sPtDu
72 1 4 5 6 tendoplcl KHLWHsEtEsPtE
73 72 3adant3r3 KHLWHsEtEuEsPtE
74 1 4 5 2 16 erngmul KHLWHsPtEuEsPtDu=sPtu
75 30 73 32 74 syl12anc KHLWHsEtEuEsPtDu=sPtu
76 71 75 eqtrd KHLWHsEtEuEsPt+˙u=sPtu
77 66 46 oveq12d KHLWHsEtEuEs+˙uPt+˙u=suPtu
78 69 76 77 3eqtr4d KHLWHsEtEuEsPt+˙u=s+˙uPt+˙u
79 1 4 5 tendoidcl KHLWHITE
80 18 oveqd KHLWHIT+˙s=ITDs
81 80 adantr KHLWHsEIT+˙s=ITDs
82 simpl KHLWHsEKHLWH
83 79 adantr KHLWHsEITE
84 simpr KHLWHsEsE
85 1 4 5 2 16 erngmul KHLWHITEsEITDs=ITs
86 82 83 84 85 syl12anc KHLWHsEITDs=ITs
87 1 4 5 tendo1mul KHLWHsEITs=s
88 81 86 87 3eqtrd KHLWHsEIT+˙s=s
89 18 oveqd KHLWHs+˙IT=sDIT
90 89 adantr KHLWHsEs+˙IT=sDIT
91 1 4 5 2 16 erngmul KHLWHsEITEsDIT=sIT
92 82 84 83 91 syl12anc KHLWHsEsDIT=sIT
93 1 4 5 tendo1mulr KHLWHsEsIT=s
94 90 92 93 3eqtrd KHLWHsEs+˙IT=s
95 12 15 18 19 26 54 68 78 79 88 94 isringd KHLWHDRing