| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ernggrp.h |  | 
						
							| 2 |  | ernggrp.d |  | 
						
							| 3 |  | erngdv.b |  | 
						
							| 4 |  | erngdv.t |  | 
						
							| 5 |  | erngdv.e |  | 
						
							| 6 |  | erngdv.p |  | 
						
							| 7 |  | erngdv.o |  | 
						
							| 8 |  | erngdv.i |  | 
						
							| 9 |  | erngrnglem.m |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 4 5 2 10 | erngbase |  | 
						
							| 12 | 11 | eqcomd |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 1 4 5 2 13 | erngfplus |  | 
						
							| 15 | 6 14 | eqtr4id |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 1 4 5 2 16 | erngfmul |  | 
						
							| 18 | 9 17 | eqtr4id |  | 
						
							| 19 | 1 2 3 4 5 6 7 8 | erngdvlem1 |  | 
						
							| 20 | 18 | oveqd |  | 
						
							| 21 | 20 | 3ad2ant1 |  | 
						
							| 22 | 1 4 5 2 16 | erngmul |  | 
						
							| 23 | 22 | 3impb |  | 
						
							| 24 | 21 23 | eqtrd |  | 
						
							| 25 | 1 5 | tendococl |  | 
						
							| 26 | 24 25 | eqeltrd |  | 
						
							| 27 |  | coass |  | 
						
							| 28 | 18 | oveqd |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | simpl |  | 
						
							| 31 | 26 | 3adant3r3 |  | 
						
							| 32 |  | simpr3 |  | 
						
							| 33 | 1 4 5 2 16 | erngmul |  | 
						
							| 34 | 30 31 32 33 | syl12anc |  | 
						
							| 35 | 18 | oveqdr |  | 
						
							| 36 | 22 | 3adantr3 |  | 
						
							| 37 | 35 36 | eqtrd |  | 
						
							| 38 | 37 | coeq1d |  | 
						
							| 39 | 29 34 38 | 3eqtrd |  | 
						
							| 40 | 18 | oveqd |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | simpr1 |  | 
						
							| 43 | 18 | oveqdr |  | 
						
							| 44 | 1 4 5 2 16 | erngmul |  | 
						
							| 45 | 44 | 3adantr1 |  | 
						
							| 46 | 43 45 | eqtrd |  | 
						
							| 47 | 1 5 | tendococl |  | 
						
							| 48 | 47 | 3adant3r1 |  | 
						
							| 49 | 46 48 | eqeltrd |  | 
						
							| 50 | 1 4 5 2 16 | erngmul |  | 
						
							| 51 | 30 42 49 50 | syl12anc |  | 
						
							| 52 | 46 | coeq2d |  | 
						
							| 53 | 41 51 52 | 3eqtrd |  | 
						
							| 54 | 27 39 53 | 3eqtr4a |  | 
						
							| 55 | 1 4 5 6 | tendodi1 |  | 
						
							| 56 | 18 | oveqd |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 1 4 5 6 | tendoplcl |  | 
						
							| 59 | 58 | 3adant3r1 |  | 
						
							| 60 | 1 4 5 2 16 | erngmul |  | 
						
							| 61 | 30 42 59 60 | syl12anc |  | 
						
							| 62 | 57 61 | eqtrd |  | 
						
							| 63 | 18 | oveqdr |  | 
						
							| 64 | 1 4 5 2 16 | erngmul |  | 
						
							| 65 | 64 | 3adantr2 |  | 
						
							| 66 | 63 65 | eqtrd |  | 
						
							| 67 | 37 66 | oveq12d |  | 
						
							| 68 | 55 62 67 | 3eqtr4d |  | 
						
							| 69 | 1 4 5 6 | tendodi2 |  | 
						
							| 70 | 18 | oveqd |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 1 4 5 6 | tendoplcl |  | 
						
							| 73 | 72 | 3adant3r3 |  | 
						
							| 74 | 1 4 5 2 16 | erngmul |  | 
						
							| 75 | 30 73 32 74 | syl12anc |  | 
						
							| 76 | 71 75 | eqtrd |  | 
						
							| 77 | 66 46 | oveq12d |  | 
						
							| 78 | 69 76 77 | 3eqtr4d |  | 
						
							| 79 | 1 4 5 | tendoidcl |  | 
						
							| 80 | 18 | oveqd |  | 
						
							| 81 | 80 | adantr |  | 
						
							| 82 |  | simpl |  | 
						
							| 83 | 79 | adantr |  | 
						
							| 84 |  | simpr |  | 
						
							| 85 | 1 4 5 2 16 | erngmul |  | 
						
							| 86 | 82 83 84 85 | syl12anc |  | 
						
							| 87 | 1 4 5 | tendo1mul |  | 
						
							| 88 | 81 86 87 | 3eqtrd |  | 
						
							| 89 | 18 | oveqd |  | 
						
							| 90 | 89 | adantr |  | 
						
							| 91 | 1 4 5 2 16 | erngmul |  | 
						
							| 92 | 82 84 83 91 | syl12anc |  | 
						
							| 93 | 1 4 5 | tendo1mulr |  | 
						
							| 94 | 90 92 93 | 3eqtrd |  | 
						
							| 95 | 12 15 18 19 26 54 68 78 79 88 94 | isringd |  |