Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Extended sum
esumpfinvallem
Next ⟩
esumpfinval
Metamath Proof Explorer
Ascii
Unicode
Theorem
esumpfinvallem
Description:
Lemma for
esumpfinval
.
(Contributed by
Thierry Arnoux
, 28-Jun-2017)
Ref
Expression
Assertion
esumpfinvallem
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
∑
ℂ
fld
F
=
∑
ℝ
𝑠
*
↾
𝑠
0
+∞
F
Proof
Step
Hyp
Ref
Expression
1
fex
⊢
F
:
A
⟶
0
+∞
∧
A
∈
V
→
F
∈
V
2
1
ancoms
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
F
∈
V
3
ovexd
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
ℂ
fld
↾
𝑠
0
+∞
∈
V
4
ovexd
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
ℝ
𝑠
*
↾
𝑠
0
+∞
∈
V
5
rge0ssre
⊢
0
+∞
⊆
ℝ
6
ax-resscn
⊢
ℝ
⊆
ℂ
7
5
6
sstri
⊢
0
+∞
⊆
ℂ
8
eqid
⊢
ℂ
fld
↾
𝑠
0
+∞
=
ℂ
fld
↾
𝑠
0
+∞
9
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
10
8
9
ressbas2
⊢
0
+∞
⊆
ℂ
→
0
+∞
=
Base
ℂ
fld
↾
𝑠
0
+∞
11
7
10
ax-mp
⊢
0
+∞
=
Base
ℂ
fld
↾
𝑠
0
+∞
12
icossxr
⊢
0
+∞
⊆
ℝ
*
13
eqid
⊢
ℝ
𝑠
*
↾
𝑠
0
+∞
=
ℝ
𝑠
*
↾
𝑠
0
+∞
14
xrsbas
⊢
ℝ
*
=
Base
ℝ
𝑠
*
15
13
14
ressbas2
⊢
0
+∞
⊆
ℝ
*
→
0
+∞
=
Base
ℝ
𝑠
*
↾
𝑠
0
+∞
16
12
15
ax-mp
⊢
0
+∞
=
Base
ℝ
𝑠
*
↾
𝑠
0
+∞
17
11
16
eqtr3i
⊢
Base
ℂ
fld
↾
𝑠
0
+∞
=
Base
ℝ
𝑠
*
↾
𝑠
0
+∞
18
17
a1i
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
Base
ℂ
fld
↾
𝑠
0
+∞
=
Base
ℝ
𝑠
*
↾
𝑠
0
+∞
19
simprl
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
∧
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
→
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
20
19
11
eleqtrrdi
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
∧
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
→
x
∈
0
+∞
21
simprr
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
∧
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
→
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
22
21
11
eleqtrrdi
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
∧
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
→
y
∈
0
+∞
23
ge0addcl
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
x
+
y
∈
0
+∞
24
ovex
⊢
0
+∞
∈
V
25
cnfldadd
⊢
+
=
+
ℂ
fld
26
8
25
ressplusg
⊢
0
+∞
∈
V
→
+
=
+
ℂ
fld
↾
𝑠
0
+∞
27
24
26
ax-mp
⊢
+
=
+
ℂ
fld
↾
𝑠
0
+∞
28
27
oveqi
⊢
x
+
y
=
x
+
ℂ
fld
↾
𝑠
0
+∞
y
29
23
28
11
3eltr3g
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
x
+
ℂ
fld
↾
𝑠
0
+∞
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
30
20
22
29
syl2anc
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
∧
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
→
x
+
ℂ
fld
↾
𝑠
0
+∞
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
31
simpl
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
x
∈
0
+∞
32
5
31
sselid
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
x
∈
ℝ
33
simpr
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
y
∈
0
+∞
34
5
33
sselid
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
y
∈
ℝ
35
rexadd
⊢
x
∈
ℝ
∧
y
∈
ℝ
→
x
+
𝑒
y
=
x
+
y
36
35
eqcomd
⊢
x
∈
ℝ
∧
y
∈
ℝ
→
x
+
y
=
x
+
𝑒
y
37
32
34
36
syl2anc
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
x
+
y
=
x
+
𝑒
y
38
xrsadd
⊢
+
𝑒
=
+
ℝ
𝑠
*
39
13
38
ressplusg
⊢
0
+∞
∈
V
→
+
𝑒
=
+
ℝ
𝑠
*
↾
𝑠
0
+∞
40
24
39
ax-mp
⊢
+
𝑒
=
+
ℝ
𝑠
*
↾
𝑠
0
+∞
41
40
oveqi
⊢
x
+
𝑒
y
=
x
+
ℝ
𝑠
*
↾
𝑠
0
+∞
y
42
37
28
41
3eqtr3g
⊢
x
∈
0
+∞
∧
y
∈
0
+∞
→
x
+
ℂ
fld
↾
𝑠
0
+∞
y
=
x
+
ℝ
𝑠
*
↾
𝑠
0
+∞
y
43
20
22
42
syl2anc
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
Base
ℂ
fld
↾
𝑠
0
+∞
∧
y
∈
Base
ℂ
fld
↾
𝑠
0
+∞
→
x
+
ℂ
fld
↾
𝑠
0
+∞
y
=
x
+
ℝ
𝑠
*
↾
𝑠
0
+∞
y
44
simpr
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
F
:
A
⟶
0
+∞
45
44
ffund
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
Fun
F
46
44
frnd
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
ran
F
⊆
0
+∞
47
46
11
sseqtrdi
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
ran
F
⊆
Base
ℂ
fld
↾
𝑠
0
+∞
48
2
3
4
18
30
43
45
47
gsumpropd2
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
∑
ℂ
fld
↾
𝑠
0
+∞
F
=
∑
ℝ
𝑠
*
↾
𝑠
0
+∞
F
49
cnfldex
⊢
ℂ
fld
∈
V
50
49
a1i
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
ℂ
fld
∈
V
51
simpl
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
A
∈
V
52
7
a1i
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
0
+∞
⊆
ℂ
53
0e0icopnf
⊢
0
∈
0
+∞
54
53
a1i
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
0
∈
0
+∞
55
simpr
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
ℂ
→
x
∈
ℂ
56
55
addlidd
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
ℂ
→
0
+
x
=
x
57
55
addridd
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
ℂ
→
x
+
0
=
x
58
56
57
jca
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
ℂ
→
0
+
x
=
x
∧
x
+
0
=
x
59
9
25
8
50
51
52
44
54
58
gsumress
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
∑
ℂ
fld
F
=
∑
ℂ
fld
↾
𝑠
0
+∞
F
60
xrge0base
⊢
0
+∞
=
Base
ℝ
𝑠
*
↾
𝑠
0
+∞
61
xrge0plusg
⊢
+
𝑒
=
+
ℝ
𝑠
*
↾
𝑠
0
+∞
62
ovex
⊢
0
+∞
∈
V
63
ressress
⊢
0
+∞
∈
V
∧
0
+∞
∈
V
→
ℝ
𝑠
*
↾
𝑠
0
+∞
↾
𝑠
0
+∞
=
ℝ
𝑠
*
↾
𝑠
0
+∞
∩
0
+∞
64
62
24
63
mp2an
⊢
ℝ
𝑠
*
↾
𝑠
0
+∞
↾
𝑠
0
+∞
=
ℝ
𝑠
*
↾
𝑠
0
+∞
∩
0
+∞
65
incom
⊢
0
+∞
∩
0
+∞
=
0
+∞
∩
0
+∞
66
icossicc
⊢
0
+∞
⊆
0
+∞
67
dfss
⊢
0
+∞
⊆
0
+∞
↔
0
+∞
=
0
+∞
∩
0
+∞
68
66
67
mpbi
⊢
0
+∞
=
0
+∞
∩
0
+∞
69
65
68
eqtr4i
⊢
0
+∞
∩
0
+∞
=
0
+∞
70
69
oveq2i
⊢
ℝ
𝑠
*
↾
𝑠
0
+∞
∩
0
+∞
=
ℝ
𝑠
*
↾
𝑠
0
+∞
71
64
70
eqtr2i
⊢
ℝ
𝑠
*
↾
𝑠
0
+∞
=
ℝ
𝑠
*
↾
𝑠
0
+∞
↾
𝑠
0
+∞
72
ovexd
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
ℝ
𝑠
*
↾
𝑠
0
+∞
∈
V
73
66
a1i
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
0
+∞
⊆
0
+∞
74
iccssxr
⊢
0
+∞
⊆
ℝ
*
75
simpr
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
0
+∞
→
x
∈
0
+∞
76
74
75
sselid
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
0
+∞
→
x
∈
ℝ
*
77
xaddlid
⊢
x
∈
ℝ
*
→
0
+
𝑒
x
=
x
78
76
77
syl
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
0
+∞
→
0
+
𝑒
x
=
x
79
xaddrid
⊢
x
∈
ℝ
*
→
x
+
𝑒
0
=
x
80
76
79
syl
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
0
+∞
→
x
+
𝑒
0
=
x
81
78
80
jca
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
∧
x
∈
0
+∞
→
0
+
𝑒
x
=
x
∧
x
+
𝑒
0
=
x
82
60
61
71
72
51
73
44
54
81
gsumress
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
∑
ℝ
𝑠
*
↾
𝑠
0
+∞
F
=
∑
ℝ
𝑠
*
↾
𝑠
0
+∞
F
83
48
59
82
3eqtr4d
⊢
A
∈
V
∧
F
:
A
⟶
0
+∞
→
∑
ℂ
fld
F
=
∑
ℝ
𝑠
*
↾
𝑠
0
+∞
F