Metamath Proof Explorer


Theorem esumpfinvallem

Description: Lemma for esumpfinval . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Assertion esumpfinvallem AVF:A0+∞fldF=𝑠*𝑠0+∞F

Proof

Step Hyp Ref Expression
1 fex F:A0+∞AVFV
2 1 ancoms AVF:A0+∞FV
3 ovexd AVF:A0+∞fld𝑠0+∞V
4 ovexd AVF:A0+∞𝑠*𝑠0+∞V
5 rge0ssre 0+∞
6 ax-resscn
7 5 6 sstri 0+∞
8 eqid fld𝑠0+∞=fld𝑠0+∞
9 cnfldbas =Basefld
10 8 9 ressbas2 0+∞0+∞=Basefld𝑠0+∞
11 7 10 ax-mp 0+∞=Basefld𝑠0+∞
12 icossxr 0+∞*
13 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
14 xrsbas *=Base𝑠*
15 13 14 ressbas2 0+∞*0+∞=Base𝑠*𝑠0+∞
16 12 15 ax-mp 0+∞=Base𝑠*𝑠0+∞
17 11 16 eqtr3i Basefld𝑠0+∞=Base𝑠*𝑠0+∞
18 17 a1i AVF:A0+∞Basefld𝑠0+∞=Base𝑠*𝑠0+∞
19 simprl AVF:A0+∞xBasefld𝑠0+∞yBasefld𝑠0+∞xBasefld𝑠0+∞
20 19 11 eleqtrrdi AVF:A0+∞xBasefld𝑠0+∞yBasefld𝑠0+∞x0+∞
21 simprr AVF:A0+∞xBasefld𝑠0+∞yBasefld𝑠0+∞yBasefld𝑠0+∞
22 21 11 eleqtrrdi AVF:A0+∞xBasefld𝑠0+∞yBasefld𝑠0+∞y0+∞
23 ge0addcl x0+∞y0+∞x+y0+∞
24 ovex 0+∞V
25 cnfldadd +=+fld
26 8 25 ressplusg 0+∞V+=+fld𝑠0+∞
27 24 26 ax-mp +=+fld𝑠0+∞
28 27 oveqi x+y=x+fld𝑠0+∞y
29 23 28 11 3eltr3g x0+∞y0+∞x+fld𝑠0+∞yBasefld𝑠0+∞
30 20 22 29 syl2anc AVF:A0+∞xBasefld𝑠0+∞yBasefld𝑠0+∞x+fld𝑠0+∞yBasefld𝑠0+∞
31 simpl x0+∞y0+∞x0+∞
32 5 31 sselid x0+∞y0+∞x
33 simpr x0+∞y0+∞y0+∞
34 5 33 sselid x0+∞y0+∞y
35 rexadd xyx+𝑒y=x+y
36 35 eqcomd xyx+y=x+𝑒y
37 32 34 36 syl2anc x0+∞y0+∞x+y=x+𝑒y
38 xrsadd +𝑒=+𝑠*
39 13 38 ressplusg 0+∞V+𝑒=+𝑠*𝑠0+∞
40 24 39 ax-mp +𝑒=+𝑠*𝑠0+∞
41 40 oveqi x+𝑒y=x+𝑠*𝑠0+∞y
42 37 28 41 3eqtr3g x0+∞y0+∞x+fld𝑠0+∞y=x+𝑠*𝑠0+∞y
43 20 22 42 syl2anc AVF:A0+∞xBasefld𝑠0+∞yBasefld𝑠0+∞x+fld𝑠0+∞y=x+𝑠*𝑠0+∞y
44 simpr AVF:A0+∞F:A0+∞
45 44 ffund AVF:A0+∞FunF
46 44 frnd AVF:A0+∞ranF0+∞
47 46 11 sseqtrdi AVF:A0+∞ranFBasefld𝑠0+∞
48 2 3 4 18 30 43 45 47 gsumpropd2 AVF:A0+∞fld𝑠0+∞F=𝑠*𝑠0+∞F
49 cnfldex fldV
50 49 a1i AVF:A0+∞fldV
51 simpl AVF:A0+∞AV
52 7 a1i AVF:A0+∞0+∞
53 0e0icopnf 00+∞
54 53 a1i AVF:A0+∞00+∞
55 simpr AVF:A0+∞xx
56 55 addlidd AVF:A0+∞x0+x=x
57 55 addridd AVF:A0+∞xx+0=x
58 56 57 jca AVF:A0+∞x0+x=xx+0=x
59 9 25 8 50 51 52 44 54 58 gsumress AVF:A0+∞fldF=fld𝑠0+∞F
60 xrge0base 0+∞=Base𝑠*𝑠0+∞
61 xrge0plusg +𝑒=+𝑠*𝑠0+∞
62 ovex 0+∞V
63 ressress 0+∞V0+∞V𝑠*𝑠0+∞𝑠0+∞=𝑠*𝑠0+∞0+∞
64 62 24 63 mp2an 𝑠*𝑠0+∞𝑠0+∞=𝑠*𝑠0+∞0+∞
65 incom 0+∞0+∞=0+∞0+∞
66 icossicc 0+∞0+∞
67 dfss 0+∞0+∞0+∞=0+∞0+∞
68 66 67 mpbi 0+∞=0+∞0+∞
69 65 68 eqtr4i 0+∞0+∞=0+∞
70 69 oveq2i 𝑠*𝑠0+∞0+∞=𝑠*𝑠0+∞
71 64 70 eqtr2i 𝑠*𝑠0+∞=𝑠*𝑠0+∞𝑠0+∞
72 ovexd AVF:A0+∞𝑠*𝑠0+∞V
73 66 a1i AVF:A0+∞0+∞0+∞
74 iccssxr 0+∞*
75 simpr AVF:A0+∞x0+∞x0+∞
76 74 75 sselid AVF:A0+∞x0+∞x*
77 xaddlid x*0+𝑒x=x
78 76 77 syl AVF:A0+∞x0+∞0+𝑒x=x
79 xaddrid x*x+𝑒0=x
80 76 79 syl AVF:A0+∞x0+∞x+𝑒0=x
81 78 80 jca AVF:A0+∞x0+∞0+𝑒x=xx+𝑒0=x
82 60 61 71 72 51 73 44 54 81 gsumress AVF:A0+∞𝑠*𝑠0+∞F=𝑠*𝑠0+∞F
83 48 59 82 3eqtr4d AVF:A0+∞fldF=𝑠*𝑠0+∞F