Metamath Proof Explorer


Theorem eupth2lems

Description: Lemma for eupth2 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypotheses eupth2.v V=VtxG
eupth2.i I=iEdgG
eupth2.g φGUPGraph
eupth2.f φFunI
eupth2.p φFEulerPathsGP
Assertion eupth2lems φn0nFxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+1FxV|¬2VtxDegVIF0..^n+1x=ifP0=Pn+1P0Pn+1

Proof

Step Hyp Ref Expression
1 eupth2.v V=VtxG
2 eupth2.i I=iEdgG
3 eupth2.g φGUPGraph
4 eupth2.f φFunI
5 eupth2.p φFEulerPathsGP
6 nn0re n0n
7 6 adantl φn0n
8 7 lep1d φn0nn+1
9 peano2re nn+1
10 7 9 syl φn0n+1
11 eupthiswlk FEulerPathsGPFWalksGP
12 wlkcl FWalksGPF0
13 5 11 12 3syl φF0
14 13 nn0red φF
15 14 adantr φn0F
16 letr nn+1Fnn+1n+1FnF
17 7 10 15 16 syl3anc φn0nn+1n+1FnF
18 8 17 mpand φn0n+1FnF
19 18 imim1d φn0nFxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pn
20 fveq2 x=yVtxDegVIF0..^n+1x=VtxDegVIF0..^n+1y
21 20 breq2d x=y2VtxDegVIF0..^n+1x2VtxDegVIF0..^n+1y
22 21 notbid x=y¬2VtxDegVIF0..^n+1x¬2VtxDegVIF0..^n+1y
23 22 elrab yxV|¬2VtxDegVIF0..^n+1xyV¬2VtxDegVIF0..^n+1y
24 3 ad3antrrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVGUPGraph
25 4 ad3antrrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVFunI
26 5 ad3antrrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVFEulerPathsGP
27 eqid VIF0..^n=VIF0..^n
28 eqid VIF0..^n+1=VIF0..^n+1
29 simpr φn0n0
30 29 ad2antrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVn0
31 simprl φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+1F
32 31 adantr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVn+1F
33 simpr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVyV
34 simplrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyVxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pn
35 1 2 24 25 26 27 28 30 32 33 34 eupth2lem3 φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyV¬2VtxDegVIF0..^n+1yyifP0=Pn+1P0Pn+1
36 35 pm5.32da φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyV¬2VtxDegVIF0..^n+1yyVyifP0=Pn+1P0Pn+1
37 0elpw 𝒫V
38 1 wlkepvtx FWalksGPP0VPFV
39 38 simpld FWalksGPP0V
40 5 11 39 3syl φP0V
41 40 ad2antrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnP0V
42 1 wlkp FWalksGPP:0FV
43 5 11 42 3syl φP:0FV
44 43 ad2antrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnP:0FV
45 peano2nn0 n0n+10
46 45 adantl φn0n+10
47 46 adantr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+10
48 nn0uz 0=0
49 47 48 eleqtrdi φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+10
50 13 ad2antrr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnF0
51 50 nn0zd φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnF
52 elfz5 n+10Fn+10Fn+1F
53 49 51 52 syl2anc φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+10Fn+1F
54 31 53 mpbird φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+10F
55 44 54 ffvelcdmd φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnPn+1V
56 41 55 prssd φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnP0Pn+1V
57 prex P0Pn+1V
58 57 elpw P0Pn+1𝒫VP0Pn+1V
59 56 58 sylibr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnP0Pn+1𝒫V
60 ifcl 𝒫VP0Pn+1𝒫VifP0=Pn+1P0Pn+1𝒫V
61 37 59 60 sylancr φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnifP0=Pn+1P0Pn+1𝒫V
62 61 elpwid φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnifP0=Pn+1P0Pn+1V
63 62 sseld φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyifP0=Pn+1P0Pn+1yV
64 63 pm4.71rd φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyifP0=Pn+1P0Pn+1yVyifP0=Pn+1P0Pn+1
65 36 64 bitr4d φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyV¬2VtxDegVIF0..^n+1yyifP0=Pn+1P0Pn+1
66 23 65 bitrid φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnyxV|¬2VtxDegVIF0..^n+1xyifP0=Pn+1P0Pn+1
67 66 eqrdv φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnxV|¬2VtxDegVIF0..^n+1x=ifP0=Pn+1P0Pn+1
68 67 exp32 φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0PnxV|¬2VtxDegVIF0..^n+1x=ifP0=Pn+1P0Pn+1
69 68 a2d φn0n+1FxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+1FxV|¬2VtxDegVIF0..^n+1x=ifP0=Pn+1P0Pn+1
70 19 69 syld φn0nFxV|¬2VtxDegVIF0..^nx=ifP0=PnP0Pnn+1FxV|¬2VtxDegVIF0..^n+1x=ifP0=Pn+1P0Pn+1