Description: Lemma for eupth2 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eupth2.v | |
|
eupth2.i | |
||
eupth2.g | |
||
eupth2.f | |
||
eupth2.p | |
||
Assertion | eupth2lems | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth2.v | |
|
2 | eupth2.i | |
|
3 | eupth2.g | |
|
4 | eupth2.f | |
|
5 | eupth2.p | |
|
6 | nn0re | |
|
7 | 6 | adantl | |
8 | 7 | lep1d | |
9 | peano2re | |
|
10 | 7 9 | syl | |
11 | eupthiswlk | |
|
12 | wlkcl | |
|
13 | 5 11 12 | 3syl | |
14 | 13 | nn0red | |
15 | 14 | adantr | |
16 | letr | |
|
17 | 7 10 15 16 | syl3anc | |
18 | 8 17 | mpand | |
19 | 18 | imim1d | |
20 | fveq2 | |
|
21 | 20 | breq2d | |
22 | 21 | notbid | |
23 | 22 | elrab | |
24 | 3 | ad3antrrr | |
25 | 4 | ad3antrrr | |
26 | 5 | ad3antrrr | |
27 | eqid | |
|
28 | eqid | |
|
29 | simpr | |
|
30 | 29 | ad2antrr | |
31 | simprl | |
|
32 | 31 | adantr | |
33 | simpr | |
|
34 | simplrr | |
|
35 | 1 2 24 25 26 27 28 30 32 33 34 | eupth2lem3 | |
36 | 35 | pm5.32da | |
37 | 0elpw | |
|
38 | 1 | wlkepvtx | |
39 | 38 | simpld | |
40 | 5 11 39 | 3syl | |
41 | 40 | ad2antrr | |
42 | 1 | wlkp | |
43 | 5 11 42 | 3syl | |
44 | 43 | ad2antrr | |
45 | peano2nn0 | |
|
46 | 45 | adantl | |
47 | 46 | adantr | |
48 | nn0uz | |
|
49 | 47 48 | eleqtrdi | |
50 | 13 | ad2antrr | |
51 | 50 | nn0zd | |
52 | elfz5 | |
|
53 | 49 51 52 | syl2anc | |
54 | 31 53 | mpbird | |
55 | 44 54 | ffvelcdmd | |
56 | 41 55 | prssd | |
57 | prex | |
|
58 | 57 | elpw | |
59 | 56 58 | sylibr | |
60 | ifcl | |
|
61 | 37 59 60 | sylancr | |
62 | 61 | elpwid | |
63 | 62 | sseld | |
64 | 63 | pm4.71rd | |
65 | 36 64 | bitr4d | |
66 | 23 65 | bitrid | |
67 | 66 | eqrdv | |
68 | 67 | exp32 | |
69 | 68 | a2d | |
70 | 19 69 | syld | |