Metamath Proof Explorer


Theorem evl1gsumdlem

Description: Lemma for evl1gsumd (induction step). (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses evl1gsumd.q O=eval1R
evl1gsumd.p P=Poly1R
evl1gsumd.b B=BaseR
evl1gsumd.u U=BaseP
evl1gsumd.r φRCRing
evl1gsumd.y φYB
Assertion evl1gsumdlem mFin¬amφxmMUOPxmMY=RxmOMYxmaMUOPxmaMY=RxmaOMY

Proof

Step Hyp Ref Expression
1 evl1gsumd.q O=eval1R
2 evl1gsumd.p P=Poly1R
3 evl1gsumd.b B=BaseR
4 evl1gsumd.u U=BaseP
5 evl1gsumd.r φRCRing
6 evl1gsumd.y φYB
7 ralunb xmaMUxmMUxaMU
8 nfcv _yM
9 nfcsb1v _xy/xM
10 csbeq1a x=yM=y/xM
11 8 9 10 cbvmpt xmaM=ymay/xM
12 11 oveq2i PxmaM=Pymay/xM
13 eqid +P=+P
14 crngring RCRingRRing
15 5 14 syl φRRing
16 2 ply1ring RRingPRing
17 15 16 syl φPRing
18 ringcmn PRingPCMnd
19 17 18 syl φPCMnd
20 19 3ad2ant3 mFin¬amφPCMnd
21 20 ad2antrr mFin¬amφxmMUxaMUPCMnd
22 simpll1 mFin¬amφxmMUxaMUmFin
23 rspcsbela ymxmMUy/xMU
24 23 expcom xmMUymy/xMU
25 24 adantl mFin¬amφxmMUymy/xMU
26 25 adantr mFin¬amφxmMUxaMUymy/xMU
27 26 imp mFin¬amφxmMUxaMUymy/xMU
28 vex aV
29 28 a1i mFin¬amφxmMUxaMUaV
30 simpll2 mFin¬amφxmMUxaMU¬am
31 vsnid aa
32 rspcsbela aaxaMUa/xMU
33 31 32 mpan xaMUa/xMU
34 33 adantl mFin¬amφxmMUxaMUa/xMU
35 csbeq1 y=ay/xM=a/xM
36 4 13 21 22 27 29 30 34 35 gsumunsn mFin¬amφxmMUxaMUPymay/xM=Pymy/xM+Pa/xM
37 12 36 eqtrid mFin¬amφxmMUxaMUPxmaM=Pymy/xM+Pa/xM
38 8 9 10 cbvmpt xmM=ymy/xM
39 38 eqcomi ymy/xM=xmM
40 39 oveq2i Pymy/xM=PxmM
41 40 oveq1i Pymy/xM+Pa/xM=PxmM+Pa/xM
42 37 41 eqtrdi mFin¬amφxmMUxaMUPxmaM=PxmM+Pa/xM
43 42 fveq2d mFin¬amφxmMUxaMUOPxmaM=OPxmM+Pa/xM
44 43 fveq1d mFin¬amφxmMUxaMUOPxmaMY=OPxmM+Pa/xMY
45 5 3ad2ant3 mFin¬amφRCRing
46 45 ad2antrr mFin¬amφxmMUxaMURCRing
47 6 3ad2ant3 mFin¬amφYB
48 47 ad2antrr mFin¬amφxmMUxaMUYB
49 simplr mFin¬amφxmMUxaMUxmMU
50 4 21 22 49 gsummptcl mFin¬amφxmMUxaMUPxmMU
51 eqidd mFin¬amφxmMUxaMUOPxmMY=OPxmMY
52 50 51 jca mFin¬amφxmMUxaMUPxmMUOPxmMY=OPxmMY
53 eqidd mFin¬amφxmMUxaMUOa/xMY=Oa/xMY
54 34 53 jca mFin¬amφxmMUxaMUa/xMUOa/xMY=Oa/xMY
55 eqid +R=+R
56 1 2 3 4 46 48 52 54 13 55 evl1addd mFin¬amφxmMUxaMUPxmM+Pa/xMUOPxmM+Pa/xMY=OPxmMY+ROa/xMY
57 56 simprd mFin¬amφxmMUxaMUOPxmM+Pa/xMY=OPxmMY+ROa/xMY
58 44 57 eqtrd mFin¬amφxmMUxaMUOPxmaMY=OPxmMY+ROa/xMY
59 oveq1 OPxmMY=RxmOMYOPxmMY+ROa/xMY=RxmOMY+ROa/xMY
60 58 59 sylan9eq mFin¬amφxmMUxaMUOPxmMY=RxmOMYOPxmaMY=RxmOMY+ROa/xMY
61 nfcv _yOMY
62 nfcsb1v _xy/xOMY
63 csbeq1a x=yOMY=y/xOMY
64 61 62 63 cbvmpt xmaOMY=ymay/xOMY
65 64 oveq2i RxmaOMY=Rymay/xOMY
66 ringcmn RRingRCMnd
67 15 66 syl φRCMnd
68 67 3ad2ant3 mFin¬amφRCMnd
69 68 ad2antrr mFin¬amφxmMUxaMURCMnd
70 csbfv12 y/xOMY=y/xOMy/xY
71 csbfv2g yVy/xOM=Oy/xM
72 71 elv y/xOM=Oy/xM
73 csbconstg yVy/xY=Y
74 73 elv y/xY=Y
75 72 74 fveq12i y/xOMy/xY=Oy/xMY
76 70 75 eqtri y/xOMY=Oy/xMY
77 46 adantr mFin¬amφxmMUxaMUymRCRing
78 48 adantr mFin¬amφxmMUxaMUymYB
79 1 2 3 4 77 78 27 fveval1fvcl mFin¬amφxmMUxaMUymOy/xMYB
80 76 79 eqeltrid mFin¬amφxmMUxaMUymy/xOMYB
81 1 2 3 4 46 48 34 fveval1fvcl mFin¬amφxmMUxaMUOa/xMYB
82 nfcv _xa
83 nfcv _xO
84 nfcsb1v _xa/xM
85 83 84 nffv _xOa/xM
86 nfcv _xY
87 85 86 nffv _xOa/xMY
88 csbeq1a x=aM=a/xM
89 88 fveq2d x=aOM=Oa/xM
90 89 fveq1d x=aOMY=Oa/xMY
91 82 87 90 csbhypf y=ay/xOMY=Oa/xMY
92 3 55 69 22 80 29 30 81 91 gsumunsn mFin¬amφxmMUxaMURymay/xOMY=Rymy/xOMY+ROa/xMY
93 65 92 eqtrid mFin¬amφxmMUxaMURxmaOMY=Rymy/xOMY+ROa/xMY
94 61 62 63 cbvmpt xmOMY=ymy/xOMY
95 94 eqcomi ymy/xOMY=xmOMY
96 95 oveq2i Rymy/xOMY=RxmOMY
97 96 oveq1i Rymy/xOMY+ROa/xMY=RxmOMY+ROa/xMY
98 93 97 eqtr2di mFin¬amφxmMUxaMURxmOMY+ROa/xMY=RxmaOMY
99 98 adantr mFin¬amφxmMUxaMUOPxmMY=RxmOMYRxmOMY+ROa/xMY=RxmaOMY
100 60 99 eqtrd mFin¬amφxmMUxaMUOPxmMY=RxmOMYOPxmaMY=RxmaOMY
101 100 exp31 mFin¬amφxmMUxaMUOPxmMY=RxmOMYOPxmaMY=RxmaOMY
102 101 com23 mFin¬amφxmMUOPxmMY=RxmOMYxaMUOPxmaMY=RxmaOMY
103 102 ex mFin¬amφxmMUOPxmMY=RxmOMYxaMUOPxmaMY=RxmaOMY
104 103 a2d mFin¬amφxmMUOPxmMY=RxmOMYxmMUxaMUOPxmaMY=RxmaOMY
105 104 imp4b mFin¬amφxmMUOPxmMY=RxmOMYxmMUxaMUOPxmaMY=RxmaOMY
106 7 105 biimtrid mFin¬amφxmMUOPxmMY=RxmOMYxmaMUOPxmaMY=RxmaOMY
107 106 ex mFin¬amφxmMUOPxmMY=RxmOMYxmaMUOPxmaMY=RxmaOMY