| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1gsumd.q |  | 
						
							| 2 |  | evl1gsumd.p |  | 
						
							| 3 |  | evl1gsumd.b |  | 
						
							| 4 |  | evl1gsumd.u |  | 
						
							| 5 |  | evl1gsumd.r |  | 
						
							| 6 |  | evl1gsumd.y |  | 
						
							| 7 |  | ralunb |  | 
						
							| 8 |  | nfcv |  | 
						
							| 9 |  | nfcsb1v |  | 
						
							| 10 |  | csbeq1a |  | 
						
							| 11 | 8 9 10 | cbvmpt |  | 
						
							| 12 | 11 | oveq2i |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | crngring |  | 
						
							| 15 | 5 14 | syl |  | 
						
							| 16 | 2 | ply1ring |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | ringcmn |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 19 | 3ad2ant3 |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 |  | simpll1 |  | 
						
							| 23 |  | rspcsbela |  | 
						
							| 24 | 23 | expcom |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 26 | imp |  | 
						
							| 28 |  | vex |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 |  | simpll2 |  | 
						
							| 31 |  | vsnid |  | 
						
							| 32 |  | rspcsbela |  | 
						
							| 33 | 31 32 | mpan |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | csbeq1 |  | 
						
							| 36 | 4 13 21 22 27 29 30 34 35 | gsumunsn |  | 
						
							| 37 | 12 36 | eqtrid |  | 
						
							| 38 | 8 9 10 | cbvmpt |  | 
						
							| 39 | 38 | eqcomi |  | 
						
							| 40 | 39 | oveq2i |  | 
						
							| 41 | 40 | oveq1i |  | 
						
							| 42 | 37 41 | eqtrdi |  | 
						
							| 43 | 42 | fveq2d |  | 
						
							| 44 | 43 | fveq1d |  | 
						
							| 45 | 5 | 3ad2ant3 |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 | 6 | 3ad2ant3 |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 |  | simplr |  | 
						
							| 50 | 4 21 22 49 | gsummptcl |  | 
						
							| 51 |  | eqidd |  | 
						
							| 52 | 50 51 | jca |  | 
						
							| 53 |  | eqidd |  | 
						
							| 54 | 34 53 | jca |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 1 2 3 4 46 48 52 54 13 55 | evl1addd |  | 
						
							| 57 | 56 | simprd |  | 
						
							| 58 | 44 57 | eqtrd |  | 
						
							| 59 |  | oveq1 |  | 
						
							| 60 | 58 59 | sylan9eq |  | 
						
							| 61 |  | nfcv |  | 
						
							| 62 |  | nfcsb1v |  | 
						
							| 63 |  | csbeq1a |  | 
						
							| 64 | 61 62 63 | cbvmpt |  | 
						
							| 65 | 64 | oveq2i |  | 
						
							| 66 |  | ringcmn |  | 
						
							| 67 | 15 66 | syl |  | 
						
							| 68 | 67 | 3ad2ant3 |  | 
						
							| 69 | 68 | ad2antrr |  | 
						
							| 70 |  | csbfv12 |  | 
						
							| 71 |  | csbfv2g |  | 
						
							| 72 | 71 | elv |  | 
						
							| 73 |  | csbconstg |  | 
						
							| 74 | 73 | elv |  | 
						
							| 75 | 72 74 | fveq12i |  | 
						
							| 76 | 70 75 | eqtri |  | 
						
							| 77 | 46 | adantr |  | 
						
							| 78 | 48 | adantr |  | 
						
							| 79 | 1 2 3 4 77 78 27 | fveval1fvcl |  | 
						
							| 80 | 76 79 | eqeltrid |  | 
						
							| 81 | 1 2 3 4 46 48 34 | fveval1fvcl |  | 
						
							| 82 |  | nfcv |  | 
						
							| 83 |  | nfcv |  | 
						
							| 84 |  | nfcsb1v |  | 
						
							| 85 | 83 84 | nffv |  | 
						
							| 86 |  | nfcv |  | 
						
							| 87 | 85 86 | nffv |  | 
						
							| 88 |  | csbeq1a |  | 
						
							| 89 | 88 | fveq2d |  | 
						
							| 90 | 89 | fveq1d |  | 
						
							| 91 | 82 87 90 | csbhypf |  | 
						
							| 92 | 3 55 69 22 80 29 30 81 91 | gsumunsn |  | 
						
							| 93 | 65 92 | eqtrid |  | 
						
							| 94 | 61 62 63 | cbvmpt |  | 
						
							| 95 | 94 | eqcomi |  | 
						
							| 96 | 95 | oveq2i |  | 
						
							| 97 | 96 | oveq1i |  | 
						
							| 98 | 93 97 | eqtr2di |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 60 99 | eqtrd |  | 
						
							| 101 | 100 | exp31 |  | 
						
							| 102 | 101 | com23 |  | 
						
							| 103 | 102 | ex |  | 
						
							| 104 | 103 | a2d |  | 
						
							| 105 | 104 | imp4b |  | 
						
							| 106 | 7 105 | biimtrid |  | 
						
							| 107 | 106 | ex |  |