Metamath Proof Explorer


Theorem evlsval2

Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsval.q Q=IevalSubSR
evlsval.w W=ImPolyU
evlsval.v V=ImVarU
evlsval.u U=S𝑠R
evlsval.t T=S𝑠BI
evlsval.b B=BaseS
evlsval.a A=algScW
evlsval.x X=xRBI×x
evlsval.y Y=xIgBIgx
Assertion evlsval2 IZSCRingRSubRingSQWRingHomTQA=XQV=Y

Proof

Step Hyp Ref Expression
1 evlsval.q Q=IevalSubSR
2 evlsval.w W=ImPolyU
3 evlsval.v V=ImVarU
4 evlsval.u U=S𝑠R
5 evlsval.t T=S𝑠BI
6 evlsval.b B=BaseS
7 evlsval.a A=algScW
8 evlsval.x X=xRBI×x
9 evlsval.y Y=xIgBIgx
10 1 2 3 4 5 6 7 8 9 evlsval IZSCRingRSubRingSQ=ιmWRingHomT|mA=XmV=Y
11 eqid BaseT=BaseT
12 simp1 IZSCRingRSubRingSIZ
13 4 subrgcrng SCRingRSubRingSUCRing
14 13 3adant1 IZSCRingRSubRingSUCRing
15 simp2 IZSCRingRSubRingSSCRing
16 ovex BIV
17 5 pwscrng SCRingBIVTCRing
18 15 16 17 sylancl IZSCRingRSubRingSTCRing
19 6 subrgss RSubRingSRB
20 19 3ad2ant3 IZSCRingRSubRingSRB
21 20 resmptd IZSCRingRSubRingSxBBI×xR=xRBI×x
22 21 8 eqtr4di IZSCRingRSubRingSxBBI×xR=X
23 crngring SCRingSRing
24 23 3ad2ant2 IZSCRingRSubRingSSRing
25 eqid xBBI×x=xBBI×x
26 5 6 25 pwsdiagrhm SRingBIVxBBI×xSRingHomT
27 24 16 26 sylancl IZSCRingRSubRingSxBBI×xSRingHomT
28 simp3 IZSCRingRSubRingSRSubRingS
29 4 resrhm xBBI×xSRingHomTRSubRingSxBBI×xRURingHomT
30 27 28 29 syl2anc IZSCRingRSubRingSxBBI×xRURingHomT
31 22 30 eqeltrrd IZSCRingRSubRingSXURingHomT
32 6 fvexi BV
33 simpl1 IZSCRingRSubRingSxIIZ
34 elmapg BVIZgBIg:IB
35 32 33 34 sylancr IZSCRingRSubRingSxIgBIg:IB
36 35 biimpa IZSCRingRSubRingSxIgBIg:IB
37 simplr IZSCRingRSubRingSxIgBIxI
38 36 37 ffvelcdmd IZSCRingRSubRingSxIgBIgxB
39 38 fmpttd IZSCRingRSubRingSxIgBIgx:BIB
40 simpl2 IZSCRingRSubRingSxISCRing
41 5 6 11 pwselbasb SCRingBIVgBIgxBaseTgBIgx:BIB
42 40 16 41 sylancl IZSCRingRSubRingSxIgBIgxBaseTgBIgx:BIB
43 39 42 mpbird IZSCRingRSubRingSxIgBIgxBaseT
44 43 9 fmptd IZSCRingRSubRingSY:IBaseT
45 2 11 7 3 12 14 18 31 44 evlseu IZSCRingRSubRingS∃!mWRingHomTmA=XmV=Y
46 riotacl2 ∃!mWRingHomTmA=XmV=YιmWRingHomT|mA=XmV=YmWRingHomT|mA=XmV=Y
47 45 46 syl IZSCRingRSubRingSιmWRingHomT|mA=XmV=YmWRingHomT|mA=XmV=Y
48 10 47 eqeltrd IZSCRingRSubRingSQmWRingHomT|mA=XmV=Y
49 coeq1 m=QmA=QA
50 49 eqeq1d m=QmA=XQA=X
51 coeq1 m=QmV=QV
52 51 eqeq1d m=QmV=YQV=Y
53 50 52 anbi12d m=QmA=XmV=YQA=XQV=Y
54 53 elrab QmWRingHomT|mA=XmV=YQWRingHomTQA=XQV=Y
55 48 54 sylib IZSCRingRSubRingSQWRingHomTQA=XQV=Y