Metamath Proof Explorer


Theorem expdioph

Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion expdioph a013|a3=a1a2Dioph3

Proof

Step Hyp Ref Expression
1 pm4.42 a3=a1a2a3=a1a2a2a3=a1a2¬a2
2 ancom a3=a1a2a2a2a3=a1a2
3 elmapi a013a:130
4 df-2 2=1+1
5 df-3 3=2+1
6 ssid 1313
7 5 6 jm2.27dlem5 1213
8 4 7 jm2.27dlem5 1113
9 1nn 1
10 9 jm2.27dlem3 111
11 8 10 sselii 113
12 ffvelcdm a:130113a10
13 3 11 12 sylancl a013a10
14 13 adantr a013a2a10
15 elnn0 a10a1a1=0
16 14 15 sylib a013a2a1a1=0
17 elnn1uz2 a1a1=1a12
18 17 biimpi a1a1=1a12
19 18 orim1i a1a1=0a1=1a12a1=0
20 16 19 syl a013a2a1=1a12a1=0
21 20 biantrurd a013a2a3=a1a2a1=1a12a1=0a3=a1a2
22 andir a1=1a12a1=0a3=a1a2a1=1a12a3=a1a2a1=0a3=a1a2
23 andir a1=1a12a3=a1a2a1=1a3=a1a2a12a3=a1a2
24 23 orbi1i a1=1a12a3=a1a2a1=0a3=a1a2a1=1a3=a1a2a12a3=a1a2a1=0a3=a1a2
25 22 24 bitri a1=1a12a1=0a3=a1a2a1=1a3=a1a2a12a3=a1a2a1=0a3=a1a2
26 nnz a2a2
27 1exp a21a2=1
28 26 27 syl a21a2=1
29 28 adantl a013a21a2=1
30 29 eqeq2d a013a2a3=1a2a3=1
31 oveq1 a1=1a1a2=1a2
32 31 eqeq2d a1=1a3=a1a2a3=1a2
33 32 bibi1d a1=1a3=a1a2a3=1a3=1a2a3=1
34 30 33 syl5ibrcom a013a2a1=1a3=a1a2a3=1
35 34 pm5.32d a013a2a1=1a3=a1a2a1=1a3=1
36 iba a2a12a12a2
37 36 adantl a013a2a12a12a2
38 37 anbi1d a013a2a12a3=a1a2a12a2a3=a1a2
39 35 38 orbi12d a013a2a1=1a3=a1a2a12a3=a1a2a1=1a3=1a12a2a3=a1a2
40 0exp a20a2=0
41 40 adantl a013a20a2=0
42 41 eqeq2d a013a2a3=0a2a3=0
43 oveq1 a1=0a1a2=0a2
44 43 eqeq2d a1=0a3=a1a2a3=0a2
45 44 bibi1d a1=0a3=a1a2a3=0a3=0a2a3=0
46 42 45 syl5ibrcom a013a2a1=0a3=a1a2a3=0
47 46 pm5.32d a013a2a1=0a3=a1a2a1=0a3=0
48 39 47 orbi12d a013a2a1=1a3=a1a2a12a3=a1a2a1=0a3=a1a2a1=1a3=1a12a2a3=a1a2a1=0a3=0
49 25 48 bitrid a013a2a1=1a12a1=0a3=a1a2a1=1a3=1a12a2a3=a1a2a1=0a3=0
50 21 49 bitrd a013a2a3=a1a2a1=1a3=1a12a2a3=a1a2a1=0a3=0
51 50 pm5.32da a013a2a3=a1a2a2a1=1a3=1a12a2a3=a1a2a1=0a3=0
52 2 51 bitrid a013a3=a1a2a2a2a1=1a3=1a12a2a3=a1a2a1=0a3=0
53 ancom a3=a1a2¬a2¬a2a3=a1a2
54 2nn 2
55 54 jm2.27dlem3 212
56 7 55 sselii 213
57 ffvelcdm a:130213a20
58 3 56 57 sylancl a013a20
59 elnn0 a20a2a2=0
60 pm2.53 a2a2=0¬a2a2=0
61 59 60 sylbi a20¬a2a2=0
62 0nnn ¬0
63 eleq1 a2=0a20
64 62 63 mtbiri a2=0¬a2
65 61 64 impbid1 a20¬a2a2=0
66 58 65 syl a013¬a2a2=0
67 66 anbi1d a013¬a2a3=a1a2a2=0a3=a1a2
68 13 nn0cnd a013a1
69 68 exp0d a013a10=1
70 69 eqeq2d a013a3=a10a3=1
71 oveq2 a2=0a1a2=a10
72 71 eqeq2d a2=0a3=a1a2a3=a10
73 72 bibi1d a2=0a3=a1a2a3=1a3=a10a3=1
74 70 73 syl5ibrcom a013a2=0a3=a1a2a3=1
75 74 pm5.32d a013a2=0a3=a1a2a2=0a3=1
76 67 75 bitrd a013¬a2a3=a1a2a2=0a3=1
77 53 76 bitrid a013a3=a1a2¬a2a2=0a3=1
78 52 77 orbi12d a013a3=a1a2a2a3=a1a2¬a2a2a1=1a3=1a12a2a3=a1a2a1=0a3=0a2=0a3=1
79 1 78 bitrid a013a3=a1a2a2a1=1a3=1a12a2a3=a1a2a1=0a3=0a2=0a3=1
80 79 rabbiia a013|a3=a1a2=a013|a2a1=1a3=1a12a2a3=a1a2a1=0a3=0a2=0a3=1
81 3nn0 30
82 ovex 13V
83 mzpproj 13V213a13a2mzPoly13
84 82 56 83 mp2an a13a2mzPoly13
85 elnnrabdioph 30a13a2mzPoly13a013|a2Dioph3
86 81 84 85 mp2an a013|a2Dioph3
87 mzpproj 13V113a13a1mzPoly13
88 82 11 87 mp2an a13a1mzPoly13
89 1z 1
90 mzpconstmpt 13V1a131mzPoly13
91 82 89 90 mp2an a131mzPoly13
92 eqrabdioph 30a13a1mzPoly13a131mzPoly13a013|a1=1Dioph3
93 81 88 91 92 mp3an a013|a1=1Dioph3
94 3nn 3
95 94 jm2.27dlem3 313
96 mzpproj 13V313a13a3mzPoly13
97 82 95 96 mp2an a13a3mzPoly13
98 eqrabdioph 30a13a3mzPoly13a131mzPoly13a013|a3=1Dioph3
99 81 97 91 98 mp3an a013|a3=1Dioph3
100 anrabdioph a013|a1=1Dioph3a013|a3=1Dioph3a013|a1=1a3=1Dioph3
101 93 99 100 mp2an a013|a1=1a3=1Dioph3
102 expdiophlem2 a013|a12a2a3=a1a2Dioph3
103 orrabdioph a013|a1=1a3=1Dioph3a013|a12a2a3=a1a2Dioph3a013|a1=1a3=1a12a2a3=a1a2Dioph3
104 101 102 103 mp2an a013|a1=1a3=1a12a2a3=a1a2Dioph3
105 eq0rabdioph 30a13a1mzPoly13a013|a1=0Dioph3
106 81 88 105 mp2an a013|a1=0Dioph3
107 eq0rabdioph 30a13a3mzPoly13a013|a3=0Dioph3
108 81 97 107 mp2an a013|a3=0Dioph3
109 anrabdioph a013|a1=0Dioph3a013|a3=0Dioph3a013|a1=0a3=0Dioph3
110 106 108 109 mp2an a013|a1=0a3=0Dioph3
111 orrabdioph a013|a1=1a3=1a12a2a3=a1a2Dioph3a013|a1=0a3=0Dioph3a013|a1=1a3=1a12a2a3=a1a2a1=0a3=0Dioph3
112 104 110 111 mp2an a013|a1=1a3=1a12a2a3=a1a2a1=0a3=0Dioph3
113 anrabdioph a013|a2Dioph3a013|a1=1a3=1a12a2a3=a1a2a1=0a3=0Dioph3a013|a2a1=1a3=1a12a2a3=a1a2a1=0a3=0Dioph3
114 86 112 113 mp2an a013|a2a1=1a3=1a12a2a3=a1a2a1=0a3=0Dioph3
115 eq0rabdioph 30a13a2mzPoly13a013|a2=0Dioph3
116 81 84 115 mp2an a013|a2=0Dioph3
117 anrabdioph a013|a2=0Dioph3a013|a3=1Dioph3a013|a2=0a3=1Dioph3
118 116 99 117 mp2an a013|a2=0a3=1Dioph3
119 orrabdioph a013|a2a1=1a3=1a12a2a3=a1a2a1=0a3=0Dioph3a013|a2=0a3=1Dioph3a013|a2a1=1a3=1a12a2a3=a1a2a1=0a3=0a2=0a3=1Dioph3
120 114 118 119 mp2an a013|a2a1=1a3=1a12a2a3=a1a2a1=0a3=0a2=0a3=1Dioph3
121 80 120 eqeltri a013|a3=a1a2Dioph3