Metamath Proof Explorer


Theorem expgcd

Description: Exponentiation distributes over GCD. sqgcd extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023)

Ref Expression
Assertion expgcd ABN0AgcdBN=ANgcdBN

Proof

Step Hyp Ref Expression
1 gcdnncl ABAgcdB
2 1 3adant3 ABN0AgcdB
3 simp3 ABN0N0
4 2 3 nnexpcld ABN0AgcdBN
5 4 nncnd ABN0AgcdBN
6 5 mulridd ABN0AgcdBN1=AgcdBN
7 nnexpcl AN0AN
8 7 3adant2 ABN0AN
9 8 nnzd ABN0AN
10 nnexpcl BN0BN
11 10 3adant1 ABN0BN
12 11 nnzd ABN0BN
13 simpl ABA
14 13 nnzd ABA
15 simpr ABB
16 15 nnzd ABB
17 gcddvds ABAgcdBAAgcdBB
18 14 16 17 syl2anc ABAgcdBAAgcdBB
19 18 3adant3 ABN0AgcdBAAgcdBB
20 19 simpld ABN0AgcdBA
21 2 nnzd ABN0AgcdB
22 simp1 ABN0A
23 22 nnzd ABN0A
24 dvdsexpim AgcdBAN0AgcdBAAgcdBNAN
25 21 23 3 24 syl3anc ABN0AgcdBAAgcdBNAN
26 20 25 mpd ABN0AgcdBNAN
27 19 simprd ABN0AgcdBB
28 simp2 ABN0B
29 28 nnzd ABN0B
30 dvdsexpim AgcdBBN0AgcdBBAgcdBNBN
31 21 29 3 30 syl3anc ABN0AgcdBBAgcdBNBN
32 27 31 mpd ABN0AgcdBNBN
33 gcddiv ANBNAgcdBNAgcdBNANAgcdBNBNANgcdBNAgcdBN=ANAgcdBNgcdBNAgcdBN
34 9 12 4 26 32 33 syl32anc ABN0ANgcdBNAgcdBN=ANAgcdBNgcdBNAgcdBN
35 nncn AA
36 35 3ad2ant1 ABN0A
37 2 nncnd ABN0AgcdB
38 2 nnne0d ABN0AgcdB0
39 36 37 38 3 expdivd ABN0AAgcdBN=ANAgcdBN
40 nncn BB
41 40 3ad2ant2 ABN0B
42 41 37 38 3 expdivd ABN0BAgcdBN=BNAgcdBN
43 39 42 oveq12d ABN0AAgcdBNgcdBAgcdBN=ANAgcdBNgcdBNAgcdBN
44 gcddiv ABAgcdBAgcdBAAgcdBBAgcdBAgcdB=AAgcdBgcdBAgcdB
45 23 29 2 19 44 syl31anc ABN0AgcdBAgcdB=AAgcdBgcdBAgcdB
46 37 38 dividd ABN0AgcdBAgcdB=1
47 45 46 eqtr3d ABN0AAgcdBgcdBAgcdB=1
48 divgcdnn ABAAgcdB
49 22 29 48 syl2anc ABN0AAgcdB
50 49 nnnn0d ABN0AAgcdB0
51 divgcdnnr BABAgcdB
52 28 23 51 syl2anc ABN0BAgcdB
53 52 nnnn0d ABN0BAgcdB0
54 nn0rppwr AAgcdB0BAgcdB0N0AAgcdBgcdBAgcdB=1AAgcdBNgcdBAgcdBN=1
55 50 53 3 54 syl3anc ABN0AAgcdBgcdBAgcdB=1AAgcdBNgcdBAgcdBN=1
56 47 55 mpd ABN0AAgcdBNgcdBAgcdBN=1
57 34 43 56 3eqtr2d ABN0ANgcdBNAgcdBN=1
58 gcdnncl ANBNANgcdBN
59 58 nncnd ANBNANgcdBN
60 8 11 59 syl2anc ABN0ANgcdBN
61 4 nnne0d ABN0AgcdBN0
62 ax-1cn 1
63 divmul ANgcdBN1AgcdBNAgcdBN0ANgcdBNAgcdBN=1AgcdBN1=ANgcdBN
64 62 63 mp3an2 ANgcdBNAgcdBNAgcdBN0ANgcdBNAgcdBN=1AgcdBN1=ANgcdBN
65 60 5 61 64 syl12anc ABN0ANgcdBNAgcdBN=1AgcdBN1=ANgcdBN
66 57 65 mpbid ABN0AgcdBN1=ANgcdBN
67 6 66 eqtr3d ABN0AgcdBN=ANgcdBN