Description: Exponentiation distributes over GCD. sqgcd extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | expgcd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdnncl | |
|
2 | 1 | 3adant3 | |
3 | simp3 | |
|
4 | 2 3 | nnexpcld | |
5 | 4 | nncnd | |
6 | 5 | mulridd | |
7 | nnexpcl | |
|
8 | 7 | 3adant2 | |
9 | 8 | nnzd | |
10 | nnexpcl | |
|
11 | 10 | 3adant1 | |
12 | 11 | nnzd | |
13 | simpl | |
|
14 | 13 | nnzd | |
15 | simpr | |
|
16 | 15 | nnzd | |
17 | gcddvds | |
|
18 | 14 16 17 | syl2anc | |
19 | 18 | 3adant3 | |
20 | 19 | simpld | |
21 | 2 | nnzd | |
22 | simp1 | |
|
23 | 22 | nnzd | |
24 | dvdsexpim | |
|
25 | 21 23 3 24 | syl3anc | |
26 | 20 25 | mpd | |
27 | 19 | simprd | |
28 | simp2 | |
|
29 | 28 | nnzd | |
30 | dvdsexpim | |
|
31 | 21 29 3 30 | syl3anc | |
32 | 27 31 | mpd | |
33 | gcddiv | |
|
34 | 9 12 4 26 32 33 | syl32anc | |
35 | nncn | |
|
36 | 35 | 3ad2ant1 | |
37 | 2 | nncnd | |
38 | 2 | nnne0d | |
39 | 36 37 38 3 | expdivd | |
40 | nncn | |
|
41 | 40 | 3ad2ant2 | |
42 | 41 37 38 3 | expdivd | |
43 | 39 42 | oveq12d | |
44 | gcddiv | |
|
45 | 23 29 2 19 44 | syl31anc | |
46 | 37 38 | dividd | |
47 | 45 46 | eqtr3d | |
48 | divgcdnn | |
|
49 | 22 29 48 | syl2anc | |
50 | 49 | nnnn0d | |
51 | divgcdnnr | |
|
52 | 28 23 51 | syl2anc | |
53 | 52 | nnnn0d | |
54 | nn0rppwr | |
|
55 | 50 53 3 54 | syl3anc | |
56 | 47 55 | mpd | |
57 | 34 43 56 | 3eqtr2d | |
58 | gcdnncl | |
|
59 | 58 | nncnd | |
60 | 8 11 59 | syl2anc | |
61 | 4 | nnne0d | |
62 | ax-1cn | |
|
63 | divmul | |
|
64 | 62 63 | mp3an2 | |
65 | 60 5 61 64 | syl12anc | |
66 | 57 65 | mpbid | |
67 | 6 66 | eqtr3d | |