Metamath Proof Explorer


Theorem exsslsb

Description: Any finite generating set S of a vector space W contains a basis. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses exsslsb.b B = Base W
exsslsb.j J = LBasis W
exsslsb.k K = LSpan W
exsslsb.w φ W LVec
exsslsb.s φ S Fin
exsslsb.1 φ S B
exsslsb.2 φ K S = B
Assertion exsslsb φ s J s S

Proof

Step Hyp Ref Expression
1 exsslsb.b B = Base W
2 exsslsb.j J = LBasis W
3 exsslsb.k K = LSpan W
4 exsslsb.w φ W LVec
5 exsslsb.s φ S Fin
6 exsslsb.1 φ S B
7 exsslsb.2 φ K S = B
8 nfv s φ
9 4 ad2antrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < W LVec
10 simplr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s V 𝒫 S K -1 B
11 10 elin2d φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s 𝒫 S K -1 B
12 11 elin1d φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s 𝒫 S
13 12 elpwid φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s S
14 6 ad2antrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < S B
15 13 14 sstrd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s B
16 lveclmod W LVec W LMod
17 eqid LSubSp W = LSubSp W
18 1 17 3 lspf W LMod K : 𝒫 B LSubSp W
19 4 16 18 3syl φ K : 𝒫 B LSubSp W
20 19 ffnd φ K Fn 𝒫 B
21 20 ad2antrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < K Fn 𝒫 B
22 11 elin2d φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s K -1 B
23 fniniseg K Fn 𝒫 B s K -1 B s 𝒫 B K s = B
24 23 simplbda K Fn 𝒫 B s K -1 B K s = B
25 21 22 24 syl2anc φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < K s = B
26 4 16 syl φ W LMod
27 26 ad3antrrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s W LMod
28 simpr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s u s
29 28 pssssd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s u s
30 13 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s s S
31 29 30 sstrd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s u S
32 14 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s S B
33 31 32 sstrd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s u B
34 1 3 lspssv W LMod u B K u B
35 27 33 34 syl2anc φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u B
36 hashf . : V 0 +∞
37 ffun . : V 0 +∞ Fun .
38 36 37 mp1i φ Fun .
39 pwssfi S Fin S Fin 𝒫 S Fin
40 39 ibi S Fin 𝒫 S Fin
41 5 40 syl φ 𝒫 S Fin
42 41 ssinss1d φ 𝒫 S K -1 B Fin
43 42 sselda φ s 𝒫 S K -1 B s Fin
44 hashcl s Fin s 0
45 43 44 syl φ s 𝒫 S K -1 B s 0
46 nn0uz 0 = 0
47 45 46 eleqtrdi φ s 𝒫 S K -1 B s 0
48 8 38 47 funimassd φ . 𝒫 S K -1 B 0
49 48 ad3antrrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s . 𝒫 S K -1 B 0
50 36 a1i φ . : V 0 +∞
51 50 ffnd φ . Fn V
52 51 ad3antrrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s . Fn V
53 52 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B . Fn V
54 vex u V
55 54 a1i φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u V
56 5 ad3antrrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s S Fin
57 56 31 sselpwd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s u 𝒫 S
58 57 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u 𝒫 S
59 21 ad2antrr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B K Fn 𝒫 B
60 1 fvexi B V
61 60 a1i φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s B V
62 61 33 sselpwd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s u 𝒫 B
63 62 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u 𝒫 B
64 simpr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B K u = B
65 fvex K u V
66 65 elsn K u B K u = B
67 64 66 sylibr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B K u B
68 59 63 67 elpreimad φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u K -1 B
69 58 68 elind φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u 𝒫 S K -1 B
70 53 55 69 fnfvimad φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u . 𝒫 S K -1 B
71 infssuzle . 𝒫 S K -1 B 0 u . 𝒫 S K -1 B inf . 𝒫 S K -1 B < u
72 49 70 71 syl2an2r φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B inf . 𝒫 S K -1 B < u
73 56 30 ssfid φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s s Fin
74 73 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B s Fin
75 simplr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u s
76 hashpss s Fin u s u < s
77 74 75 76 syl2anc φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u < s
78 simpllr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B s = inf . 𝒫 S K -1 B <
79 77 78 breqtrd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u < inf . 𝒫 S K -1 B <
80 29 adantr φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u s
81 74 80 ssfid φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u Fin
82 hashcl u Fin u 0
83 81 82 syl φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u 0
84 83 nn0red φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u
85 74 44 syl φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B s 0
86 85 nn0red φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B s
87 78 86 eqeltrrd φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B inf . 𝒫 S K -1 B <
88 84 87 ltnled φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B u < inf . 𝒫 S K -1 B < ¬ inf . 𝒫 S K -1 B < u
89 79 88 mpbid φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u = B ¬ inf . 𝒫 S K -1 B < u
90 72 89 pm2.65da φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s ¬ K u = B
91 90 neqned φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u B
92 df-pss K u B K u B K u B
93 35 91 92 sylanbrc φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u B
94 93 ex φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u s K u B
95 94 alrimiv φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < u u s K u B
96 1 2 3 islbs3 W LVec s J s B K s = B u u s K u B
97 96 biimpar W LVec s B K s = B u u s K u B s J
98 9 15 25 95 97 syl13anc φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B < s J
99 5 elexd φ S V
100 pwidg S Fin S 𝒫 S
101 5 100 syl φ S 𝒫 S
102 5 6 elpwd φ S 𝒫 B
103 fvex K S V
104 103 elsn K S B K S = B
105 7 104 sylibr φ K S B
106 20 102 105 elpreimad φ S K -1 B
107 101 106 elind φ S 𝒫 S K -1 B
108 51 99 107 fnfvimad φ S . 𝒫 S K -1 B
109 108 ne0d φ . 𝒫 S K -1 B
110 infssuzcl . 𝒫 S K -1 B 0 . 𝒫 S K -1 B inf . 𝒫 S K -1 B < . 𝒫 S K -1 B
111 48 109 110 syl2anc φ inf . 𝒫 S K -1 B < . 𝒫 S K -1 B
112 fvelima2 . Fn V inf . 𝒫 S K -1 B < . 𝒫 S K -1 B s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B <
113 51 111 112 syl2anc φ s V 𝒫 S K -1 B s = inf . 𝒫 S K -1 B <
114 8 98 13 113 reximd2a φ s J s S