Step |
Hyp |
Ref |
Expression |
1 |
|
f1o0 |
|
2 |
|
eqidd |
|
3 |
|
dm0 |
|
4 |
3
|
a1i |
|
5 |
|
id |
|
6 |
2 4 5
|
f1oeq123d |
|
7 |
1 6
|
mpbiri |
|
8 |
|
fveq2 |
|
9 |
|
hash0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
10
|
oveq1d |
|
12 |
|
0p1e1 |
|
13 |
11 12
|
eqtrdi |
|
14 |
13
|
oveq2d |
|
15 |
|
fzo0 |
|
16 |
14 15
|
eqtrdi |
|
17 |
4 16
|
eqtr4d |
|
18 |
17
|
olcd |
|
19 |
7 18
|
jca |
|
20 |
|
0ex |
|
21 |
|
id |
|
22 |
|
dmeq |
|
23 |
|
eqidd |
|
24 |
21 22 23
|
f1oeq123d |
|
25 |
22
|
eqeq1d |
|
26 |
22
|
eqeq1d |
|
27 |
25 26
|
orbi12d |
|
28 |
24 27
|
anbi12d |
|
29 |
20 28
|
spcev |
|
30 |
19 29
|
syl |
|
31 |
30
|
adantl |
|
32 |
|
f1odm |
|
33 |
32
|
f1oeq2d |
|
34 |
33
|
ibir |
|
35 |
34
|
adantl |
|
36 |
32
|
adantl |
|
37 |
|
simpl |
|
38 |
37
|
nnzd |
|
39 |
|
fzval3 |
|
40 |
38 39
|
syl |
|
41 |
36 40
|
eqtrd |
|
42 |
41
|
olcd |
|
43 |
35 42
|
jca |
|
44 |
43
|
ex |
|
45 |
44
|
eximdv |
|
46 |
45
|
imp |
|
47 |
46
|
adantl |
|
48 |
|
fz1f1o |
|
49 |
48
|
adantl |
|
50 |
31 47 49
|
mpjaodan |
|
51 |
|
isfinite |
|
52 |
51
|
notbii |
|
53 |
52
|
biimpi |
|
54 |
53
|
anim2i |
|
55 |
|
bren2 |
|
56 |
54 55
|
sylibr |
|
57 |
|
nnenom |
|
58 |
57
|
ensymi |
|
59 |
|
entr |
|
60 |
56 58 59
|
sylancl |
|
61 |
|
bren |
|
62 |
60 61
|
sylib |
|
63 |
|
f1oexbi |
|
64 |
62 63
|
sylib |
|
65 |
|
f1odm |
|
66 |
65
|
f1oeq2d |
|
67 |
66
|
ibir |
|
68 |
65
|
orcd |
|
69 |
67 68
|
jca |
|
70 |
69
|
eximi |
|
71 |
64 70
|
syl |
|
72 |
50 71
|
pm2.61dan |
|