Metamath Proof Explorer


Theorem fargshiftfo

Description: If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017)

Ref Expression
Hypothesis fargshift.g G=x0..^FFx+1
Assertion fargshiftfo N0F:1NontodomEG:0..^FontodomE

Proof

Step Hyp Ref Expression
1 fargshift.g G=x0..^FFx+1
2 fof F:1NontodomEF:1NdomE
3 1 fargshiftf N0F:1NdomEG:0..^FdomE
4 2 3 sylan2 N0F:1NontodomEG:0..^FdomE
5 1 rnmpt ranG=y|x0..^Fy=Fx+1
6 fofn F:1NontodomEFFn1N
7 fnrnfv FFn1NranF=y|z1Ny=Fz
8 6 7 syl F:1NontodomEranF=y|z1Ny=Fz
9 8 adantl N0F:1NontodomEranF=y|z1Ny=Fz
10 df-fo F:1NontodomEFFn1NranF=domE
11 10 biimpi F:1NontodomEFFn1NranF=domE
12 11 adantl N0F:1NontodomEFFn1NranF=domE
13 eqeq1 ranF=domEranF=y|z1Ny=FzdomE=y|z1Ny=Fz
14 eqcom domE=y|z1Ny=Fzy|z1Ny=Fz=domE
15 13 14 bitrdi ranF=domEranF=y|z1Ny=Fzy|z1Ny=Fz=domE
16 ffn F:1NdomEFFn1N
17 fseq1hash N0FFn1NF=N
18 16 17 sylan2 N0F:1NdomEF=N
19 2 18 sylan2 N0F:1NontodomEF=N
20 fz0add1fz1 N0x0..^Nx+11N
21 nn0z N0N
22 fzval3 N1N=1..^N+1
23 21 22 syl N01N=1..^N+1
24 nn0cn N0N
25 1cnd N01
26 24 25 addcomd N0N+1=1+N
27 26 oveq2d N01..^N+1=1..^1+N
28 23 27 eqtrd N01N=1..^1+N
29 28 eleq2d N0z1Nz1..^1+N
30 29 biimpa N0z1Nz1..^1+N
31 21 adantr N0z1NN
32 fzosubel3 z1..^1+NNz10..^N
33 30 31 32 syl2anc N0z1Nz10..^N
34 oveq1 x=z1x+1=z-1+1
35 34 eqeq2d x=z1z=x+1z=z-1+1
36 35 adantl N0z1Nx=z1z=x+1z=z-1+1
37 elfzelz z1Nz
38 37 zcnd z1Nz
39 38 adantl N0z1Nz
40 1cnd N0z1N1
41 39 40 npcand N0z1Nz-1+1=z
42 41 eqcomd N0z1Nz=z-1+1
43 33 36 42 rspcedvd N0z1Nx0..^Nz=x+1
44 fveq2 z=x+1Fz=Fx+1
45 44 eqeq2d z=x+1y=Fzy=Fx+1
46 45 adantl N0z=x+1y=Fzy=Fx+1
47 20 43 46 rexxfrd N0z1Ny=Fzx0..^Ny=Fx+1
48 47 adantr N0F=Nz1Ny=Fzx0..^Ny=Fx+1
49 oveq2 F=N0..^F=0..^N
50 49 rexeqdv F=Nx0..^Fy=Fx+1x0..^Ny=Fx+1
51 50 bibi2d F=Nz1Ny=Fzx0..^Fy=Fx+1z1Ny=Fzx0..^Ny=Fx+1
52 51 adantl N0F=Nz1Ny=Fzx0..^Fy=Fx+1z1Ny=Fzx0..^Ny=Fx+1
53 48 52 mpbird N0F=Nz1Ny=Fzx0..^Fy=Fx+1
54 19 53 syldan N0F:1NontodomEz1Ny=Fzx0..^Fy=Fx+1
55 54 abbidv N0F:1NontodomEy|z1Ny=Fz=y|x0..^Fy=Fx+1
56 55 eqeq1d N0F:1NontodomEy|z1Ny=Fz=domEy|x0..^Fy=Fx+1=domE
57 56 biimpcd y|z1Ny=Fz=domEN0F:1NontodomEy|x0..^Fy=Fx+1=domE
58 15 57 syl6bi ranF=domEranF=y|z1Ny=FzN0F:1NontodomEy|x0..^Fy=Fx+1=domE
59 58 com23 ranF=domEN0F:1NontodomEranF=y|z1Ny=Fzy|x0..^Fy=Fx+1=domE
60 59 adantl FFn1NranF=domEN0F:1NontodomEranF=y|z1Ny=Fzy|x0..^Fy=Fx+1=domE
61 12 60 mpcom N0F:1NontodomEranF=y|z1Ny=Fzy|x0..^Fy=Fx+1=domE
62 9 61 mpd N0F:1NontodomEy|x0..^Fy=Fx+1=domE
63 5 62 eqtrid N0F:1NontodomEranG=domE
64 dffo2 G:0..^FontodomEG:0..^FdomEranG=domE
65 4 63 64 sylanbrc N0F:1NontodomEG:0..^FontodomE