Metamath Proof Explorer


Theorem fbssfi

Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbssfi F fBas X A fi F x F x A

Proof

Step Hyp Ref Expression
1 dffi2 F fBas X fi F = z | F z u z v z u v z
2 sseq2 t = u v x t x u v
3 2 rexbidv t = u v x F x t x F x u v
4 inss1 u v u
5 simp1r F fBas X u 𝒫 F y F y u z F z v u 𝒫 F
6 5 elpwid F fBas X u 𝒫 F y F y u z F z v u F
7 4 6 sstrid F fBas X u 𝒫 F y F y u z F z v u v F
8 vex u V
9 8 inex1 u v V
10 9 elpw u v 𝒫 F u v F
11 7 10 sylibr F fBas X u 𝒫 F y F y u z F z v u v 𝒫 F
12 simpl F fBas X u 𝒫 F F fBas X
13 simpl y F y u y F
14 simpl z F z v z F
15 fbasssin F fBas X y F z F x F x y z
16 12 13 14 15 syl3an F fBas X u 𝒫 F y F y u z F z v x F x y z
17 ss2in y u z v y z u v
18 17 ad2ant2l y F y u z F z v y z u v
19 18 3adant1 F fBas X u 𝒫 F y F y u z F z v y z u v
20 sstr x y z y z u v x u v
21 20 expcom y z u v x y z x u v
22 19 21 syl F fBas X u 𝒫 F y F y u z F z v x y z x u v
23 22 reximdv F fBas X u 𝒫 F y F y u z F z v x F x y z x F x u v
24 16 23 mpd F fBas X u 𝒫 F y F y u z F z v x F x u v
25 3 11 24 elrabd F fBas X u 𝒫 F y F y u z F z v u v t 𝒫 F | x F x t
26 25 3expa F fBas X u 𝒫 F y F y u z F z v u v t 𝒫 F | x F x t
27 26 rexlimdvaa F fBas X u 𝒫 F y F y u z F z v u v t 𝒫 F | x F x t
28 27 ralrimivw F fBas X u 𝒫 F y F y u v 𝒫 F z F z v u v t 𝒫 F | x F x t
29 sseq2 t = v x t x v
30 29 rexbidv t = v x F x t x F x v
31 sseq1 x = z x v z v
32 31 cbvrexvw x F x v z F z v
33 30 32 bitrdi t = v x F x t z F z v
34 33 ralrab v t 𝒫 F | x F x t u v t 𝒫 F | x F x t v 𝒫 F z F z v u v t 𝒫 F | x F x t
35 28 34 sylibr F fBas X u 𝒫 F y F y u v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
36 35 rexlimdvaa F fBas X u 𝒫 F y F y u v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
37 36 ralrimiva F fBas X u 𝒫 F y F y u v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
38 sseq2 t = u x t x u
39 38 rexbidv t = u x F x t x F x u
40 sseq1 x = y x u y u
41 40 cbvrexvw x F x u y F y u
42 39 41 bitrdi t = u x F x t y F y u
43 42 ralrab u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t u 𝒫 F y F y u v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
44 37 43 sylibr F fBas X u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
45 pwuni F 𝒫 F
46 ssid t t
47 sseq1 x = t x t t t
48 47 rspcev t F t t x F x t
49 46 48 mpan2 t F x F x t
50 49 rgen t F x F x t
51 ssrab F t 𝒫 F | x F x t F 𝒫 F t F x F x t
52 45 50 51 mpbir2an F t 𝒫 F | x F x t
53 44 52 jctil F fBas X F t 𝒫 F | x F x t u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
54 uniexg F fBas X F V
55 pwexg F V 𝒫 F V
56 rabexg 𝒫 F V t 𝒫 F | x F x t V
57 sseq2 z = t 𝒫 F | x F x t F z F t 𝒫 F | x F x t
58 eleq2 z = t 𝒫 F | x F x t u v z u v t 𝒫 F | x F x t
59 58 raleqbi1dv z = t 𝒫 F | x F x t v z u v z v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
60 59 raleqbi1dv z = t 𝒫 F | x F x t u z v z u v z u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
61 57 60 anbi12d z = t 𝒫 F | x F x t F z u z v z u v z F t 𝒫 F | x F x t u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
62 61 elabg t 𝒫 F | x F x t V t 𝒫 F | x F x t z | F z u z v z u v z F t 𝒫 F | x F x t u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
63 54 55 56 62 4syl F fBas X t 𝒫 F | x F x t z | F z u z v z u v z F t 𝒫 F | x F x t u t 𝒫 F | x F x t v t 𝒫 F | x F x t u v t 𝒫 F | x F x t
64 53 63 mpbird F fBas X t 𝒫 F | x F x t z | F z u z v z u v z
65 intss1 t 𝒫 F | x F x t z | F z u z v z u v z z | F z u z v z u v z t 𝒫 F | x F x t
66 64 65 syl F fBas X z | F z u z v z u v z t 𝒫 F | x F x t
67 1 66 eqsstrd F fBas X fi F t 𝒫 F | x F x t
68 67 sselda F fBas X A fi F A t 𝒫 F | x F x t
69 sseq2 t = A x t x A
70 69 rexbidv t = A x F x t x F x A
71 70 elrab A t 𝒫 F | x F x t A 𝒫 F x F x A
72 71 simprbi A t 𝒫 F | x F x t x F x A
73 68 72 syl F fBas X A fi F x F x A