Metamath Proof Explorer


Theorem fbssfi

Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbssfi FfBasXAfiFxFxA

Proof

Step Hyp Ref Expression
1 dffi2 FfBasXfiF=z|Fzuzvzuvz
2 sseq2 t=uvxtxuv
3 2 rexbidv t=uvxFxtxFxuv
4 inss1 uvu
5 simp1r FfBasXu𝒫FyFyuzFzvu𝒫F
6 5 elpwid FfBasXu𝒫FyFyuzFzvuF
7 4 6 sstrid FfBasXu𝒫FyFyuzFzvuvF
8 vex uV
9 8 inex1 uvV
10 9 elpw uv𝒫FuvF
11 7 10 sylibr FfBasXu𝒫FyFyuzFzvuv𝒫F
12 simpl FfBasXu𝒫FFfBasX
13 simpl yFyuyF
14 simpl zFzvzF
15 fbasssin FfBasXyFzFxFxyz
16 12 13 14 15 syl3an FfBasXu𝒫FyFyuzFzvxFxyz
17 ss2in yuzvyzuv
18 17 ad2ant2l yFyuzFzvyzuv
19 18 3adant1 FfBasXu𝒫FyFyuzFzvyzuv
20 sstr xyzyzuvxuv
21 20 expcom yzuvxyzxuv
22 19 21 syl FfBasXu𝒫FyFyuzFzvxyzxuv
23 22 reximdv FfBasXu𝒫FyFyuzFzvxFxyzxFxuv
24 16 23 mpd FfBasXu𝒫FyFyuzFzvxFxuv
25 3 11 24 elrabd FfBasXu𝒫FyFyuzFzvuvt𝒫F|xFxt
26 25 3expa FfBasXu𝒫FyFyuzFzvuvt𝒫F|xFxt
27 26 rexlimdvaa FfBasXu𝒫FyFyuzFzvuvt𝒫F|xFxt
28 27 ralrimivw FfBasXu𝒫FyFyuv𝒫FzFzvuvt𝒫F|xFxt
29 sseq2 t=vxtxv
30 29 rexbidv t=vxFxtxFxv
31 sseq1 x=zxvzv
32 31 cbvrexvw xFxvzFzv
33 30 32 bitrdi t=vxFxtzFzv
34 33 ralrab vt𝒫F|xFxtuvt𝒫F|xFxtv𝒫FzFzvuvt𝒫F|xFxt
35 28 34 sylibr FfBasXu𝒫FyFyuvt𝒫F|xFxtuvt𝒫F|xFxt
36 35 rexlimdvaa FfBasXu𝒫FyFyuvt𝒫F|xFxtuvt𝒫F|xFxt
37 36 ralrimiva FfBasXu𝒫FyFyuvt𝒫F|xFxtuvt𝒫F|xFxt
38 sseq2 t=uxtxu
39 38 rexbidv t=uxFxtxFxu
40 sseq1 x=yxuyu
41 40 cbvrexvw xFxuyFyu
42 39 41 bitrdi t=uxFxtyFyu
43 42 ralrab ut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxtu𝒫FyFyuvt𝒫F|xFxtuvt𝒫F|xFxt
44 37 43 sylibr FfBasXut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxt
45 pwuni F𝒫F
46 ssid tt
47 sseq1 x=txttt
48 47 rspcev tFttxFxt
49 46 48 mpan2 tFxFxt
50 49 rgen tFxFxt
51 ssrab Ft𝒫F|xFxtF𝒫FtFxFxt
52 45 50 51 mpbir2an Ft𝒫F|xFxt
53 44 52 jctil FfBasXFt𝒫F|xFxtut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxt
54 uniexg FfBasXFV
55 pwexg FV𝒫FV
56 rabexg 𝒫FVt𝒫F|xFxtV
57 sseq2 z=t𝒫F|xFxtFzFt𝒫F|xFxt
58 eleq2 z=t𝒫F|xFxtuvzuvt𝒫F|xFxt
59 58 raleqbi1dv z=t𝒫F|xFxtvzuvzvt𝒫F|xFxtuvt𝒫F|xFxt
60 59 raleqbi1dv z=t𝒫F|xFxtuzvzuvzut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxt
61 57 60 anbi12d z=t𝒫F|xFxtFzuzvzuvzFt𝒫F|xFxtut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxt
62 61 elabg t𝒫F|xFxtVt𝒫F|xFxtz|FzuzvzuvzFt𝒫F|xFxtut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxt
63 54 55 56 62 4syl FfBasXt𝒫F|xFxtz|FzuzvzuvzFt𝒫F|xFxtut𝒫F|xFxtvt𝒫F|xFxtuvt𝒫F|xFxt
64 53 63 mpbird FfBasXt𝒫F|xFxtz|Fzuzvzuvz
65 intss1 t𝒫F|xFxtz|Fzuzvzuvzz|Fzuzvzuvzt𝒫F|xFxt
66 64 65 syl FfBasXz|Fzuzvzuvzt𝒫F|xFxt
67 1 66 eqsstrd FfBasXfiFt𝒫F|xFxt
68 67 sselda FfBasXAfiFAt𝒫F|xFxt
69 sseq2 t=AxtxA
70 69 rexbidv t=AxFxtxFxA
71 70 elrab At𝒫F|xFxtA𝒫FxFxA
72 71 simprbi At𝒫F|xFxtxFxA
73 68 72 syl FfBasXAfiFxFxA