Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of Kalmbach p. 25. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | fh2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chincl | |
|
2 | chincl | |
|
3 | chjcl | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | anandis | |
6 | chjcl | |
|
7 | chincl | |
|
8 | 6 7 | sylan2 | |
9 | chsh | |
|
10 | 8 9 | syl | |
11 | 5 10 | jca | |
12 | 11 | 3impb | |
13 | 12 | adantr | |
14 | ledi | |
|
15 | 14 | adantr | |
16 | chdmj1 | |
|
17 | 1 2 16 | syl2an | |
18 | chdmm1 | |
|
19 | 18 | adantr | |
20 | 19 | ineq1d | |
21 | 17 20 | eqtrd | |
22 | 21 | 3impdi | |
23 | 22 | ineq2d | |
24 | 23 | adantr | |
25 | in4 | |
|
26 | cmcm2 | |
|
27 | cmcm | |
|
28 | choccl | |
|
29 | cmbr3 | |
|
30 | 28 29 | sylan2 | |
31 | 26 27 30 | 3bitr3d | |
32 | 31 | biimpa | |
33 | incom | |
|
34 | 32 33 | eqtrdi | |
35 | 34 | 3adantl3 | |
36 | 35 | adantrr | |
37 | 36 | ineq1d | |
38 | 25 37 | eqtrid | |
39 | 24 38 | eqtrd | |
40 | in4 | |
|
41 | 39 40 | eqtrdi | |
42 | ococ | |
|
43 | 42 | oveq1d | |
44 | 43 | ineq2d | |
45 | 44 | 3ad2ant2 | |
46 | 45 | adantr | |
47 | cmcm3 | |
|
48 | cmbr3 | |
|
49 | 28 48 | sylan | |
50 | 47 49 | bitrd | |
51 | 50 | biimpa | |
52 | 51 | 3adantl1 | |
53 | 52 | adantrl | |
54 | 46 53 | eqtr3d | |
55 | 54 | ineq1d | |
56 | inass | |
|
57 | in12 | |
|
58 | inass | |
|
59 | 57 58 | eqtr4i | |
60 | chocin | |
|
61 | 2 60 | syl | |
62 | 59 61 | eqtrid | |
63 | 62 | ineq2d | |
64 | 56 63 | eqtrid | |
65 | 64 | 3adant2 | |
66 | chm0 | |
|
67 | 28 66 | syl | |
68 | 67 | 3ad2ant2 | |
69 | 65 68 | eqtrd | |
70 | 69 | adantr | |
71 | 55 70 | eqtrd | |
72 | 41 71 | eqtrd | |
73 | pjoml | |
|
74 | 13 15 72 73 | syl12anc | |
75 | 74 | eqcomd | |