Metamath Proof Explorer


Theorem fin1a2lem7

Description: Lemma for fin1a2 . Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypotheses fin1a2lem.b E=xω2𝑜𝑜x
fin1a2lem.aa S=xOnsucx
Assertion fin1a2lem7 AVy𝒫AyFinIIIAyFinIIIAFinIII

Proof

Step Hyp Ref Expression
1 fin1a2lem.b E=xω2𝑜𝑜x
2 fin1a2lem.aa S=xOnsucx
3 peano1 ω
4 ne0i ωω
5 brwdomn0 ωω*Aff:Aontoω
6 3 4 5 mp2b ω*Aff:Aontoω
7 vex fV
8 fof f:Aontoωf:Aω
9 dmfex fVf:AωAV
10 7 8 9 sylancr f:AontoωAV
11 cnvimass f-1ranEdomf
12 11 8 fssdm f:Aontoωf-1ranEA
13 10 12 sselpwd f:Aontoωf-1ranE𝒫A
14 1 fin1a2lem4 E:ω1-1ω
15 f1cnv E:ω1-1ωE-1:ranE1-1 ontoω
16 f1ofo E-1:ranE1-1 ontoωE-1:ranEontoω
17 14 15 16 mp2b E-1:ranEontoω
18 fofun E-1:ranEontoωFunE-1
19 17 18 ax-mp FunE-1
20 7 resex ff-1ranEV
21 cofunexg FunE-1ff-1ranEVE-1ff-1ranEV
22 19 20 21 mp2an E-1ff-1ranEV
23 fofun f:AontoωFunf
24 fores Funff-1ranEdomfff-1ranE:f-1ranEontoff-1ranE
25 23 11 24 sylancl f:Aontoωff-1ranE:f-1ranEontoff-1ranE
26 f1f E:ω1-1ωE:ωω
27 frn E:ωωranEω
28 14 26 27 mp2b ranEω
29 foimacnv f:AontoωranEωff-1ranE=ranE
30 28 29 mpan2 f:Aontoωff-1ranE=ranE
31 foeq3 ff-1ranE=ranEff-1ranE:f-1ranEontoff-1ranEff-1ranE:f-1ranEontoranE
32 30 31 syl f:Aontoωff-1ranE:f-1ranEontoff-1ranEff-1ranE:f-1ranEontoranE
33 25 32 mpbid f:Aontoωff-1ranE:f-1ranEontoranE
34 foco E-1:ranEontoωff-1ranE:f-1ranEontoranEE-1ff-1ranE:f-1ranEontoω
35 17 33 34 sylancr f:AontoωE-1ff-1ranE:f-1ranEontoω
36 fowdom E-1ff-1ranEVE-1ff-1ranE:f-1ranEontoωω*f-1ranE
37 22 35 36 sylancr f:Aontoωω*f-1ranE
38 7 cnvex f-1V
39 38 imaex f-1ranEV
40 isfin3-2 f-1ranEVf-1ranEFinIII¬ω*f-1ranE
41 39 40 ax-mp f-1ranEFinIII¬ω*f-1ranE
42 41 con2bii ω*f-1ranE¬f-1ranEFinIII
43 37 42 sylib f:Aontoω¬f-1ranEFinIII
44 1 2 fin1a2lem6 SranE:ranE1-1 ontoωranE
45 f1ocnv SranE:ranE1-1 ontoωranESranE-1:ωranE1-1 ontoranE
46 f1ofo SranE-1:ωranE1-1 ontoranESranE-1:ωranEontoranE
47 44 45 46 mp2b SranE-1:ωranEontoranE
48 foco E-1:ranEontoωSranE-1:ωranEontoranEE-1SranE-1:ωranEontoω
49 17 47 48 mp2an E-1SranE-1:ωranEontoω
50 fofun E-1SranE-1:ωranEontoωFunE-1SranE-1
51 49 50 ax-mp FunE-1SranE-1
52 7 resex fAf-1ranEV
53 cofunexg FunE-1SranE-1fAf-1ranEVE-1SranE-1fAf-1ranEV
54 51 52 53 mp2an E-1SranE-1fAf-1ranEV
55 difss Af-1ranEA
56 8 fdmd f:Aontoωdomf=A
57 55 56 sseqtrrid f:AontoωAf-1ranEdomf
58 fores FunfAf-1ranEdomffAf-1ranE:Af-1ranEontofAf-1ranE
59 23 57 58 syl2anc f:AontoωfAf-1ranE:Af-1ranEontofAf-1ranE
60 funcnvcnv FunfFunf-1-1
61 imadif Funf-1-1f-1ωranE=f-1ωf-1ranE
62 23 60 61 3syl f:Aontoωf-1ωranE=f-1ωf-1ranE
63 62 imaeq2d f:Aontoωff-1ωranE=ff-1ωf-1ranE
64 difss ωranEω
65 foimacnv f:AontoωωranEωff-1ωranE=ωranE
66 64 65 mpan2 f:Aontoωff-1ωranE=ωranE
67 fimacnv f:Aωf-1ω=A
68 8 67 syl f:Aontoωf-1ω=A
69 68 difeq1d f:Aontoωf-1ωf-1ranE=Af-1ranE
70 69 imaeq2d f:Aontoωff-1ωf-1ranE=fAf-1ranE
71 63 66 70 3eqtr3rd f:AontoωfAf-1ranE=ωranE
72 foeq3 fAf-1ranE=ωranEfAf-1ranE:Af-1ranEontofAf-1ranEfAf-1ranE:Af-1ranEontoωranE
73 71 72 syl f:AontoωfAf-1ranE:Af-1ranEontofAf-1ranEfAf-1ranE:Af-1ranEontoωranE
74 59 73 mpbid f:AontoωfAf-1ranE:Af-1ranEontoωranE
75 foco E-1SranE-1:ωranEontoωfAf-1ranE:Af-1ranEontoωranEE-1SranE-1fAf-1ranE:Af-1ranEontoω
76 49 74 75 sylancr f:AontoωE-1SranE-1fAf-1ranE:Af-1ranEontoω
77 fowdom E-1SranE-1fAf-1ranEVE-1SranE-1fAf-1ranE:Af-1ranEontoωω*Af-1ranE
78 54 76 77 sylancr f:Aontoωω*Af-1ranE
79 difexg AVAf-1ranEV
80 isfin3-2 Af-1ranEVAf-1ranEFinIII¬ω*Af-1ranE
81 10 79 80 3syl f:AontoωAf-1ranEFinIII¬ω*Af-1ranE
82 81 con2bid f:Aontoωω*Af-1ranE¬Af-1ranEFinIII
83 78 82 mpbid f:Aontoω¬Af-1ranEFinIII
84 eleq1 y=f-1ranEyFinIIIf-1ranEFinIII
85 difeq2 y=f-1ranEAy=Af-1ranE
86 85 eleq1d y=f-1ranEAyFinIIIAf-1ranEFinIII
87 84 86 orbi12d y=f-1ranEyFinIIIAyFinIIIf-1ranEFinIIIAf-1ranEFinIII
88 87 notbid y=f-1ranE¬yFinIIIAyFinIII¬f-1ranEFinIIIAf-1ranEFinIII
89 ioran ¬f-1ranEFinIIIAf-1ranEFinIII¬f-1ranEFinIII¬Af-1ranEFinIII
90 88 89 bitrdi y=f-1ranE¬yFinIIIAyFinIII¬f-1ranEFinIII¬Af-1ranEFinIII
91 90 rspcev f-1ranE𝒫A¬f-1ranEFinIII¬Af-1ranEFinIIIy𝒫A¬yFinIIIAyFinIII
92 13 43 83 91 syl12anc f:Aontoωy𝒫A¬yFinIIIAyFinIII
93 rexnal y𝒫A¬yFinIIIAyFinIII¬y𝒫AyFinIIIAyFinIII
94 92 93 sylib f:Aontoω¬y𝒫AyFinIIIAyFinIII
95 94 exlimiv ff:Aontoω¬y𝒫AyFinIIIAyFinIII
96 6 95 sylbi ω*A¬y𝒫AyFinIIIAyFinIII
97 96 con2i y𝒫AyFinIIIAyFinIII¬ω*A
98 isfin3-2 AVAFinIII¬ω*A
99 97 98 imbitrrid AVy𝒫AyFinIIIAyFinIIIAFinIII
100 99 imp AVy𝒫AyFinIIIAyFinIIIAFinIII