Description: Lemma for finxpsuc . (Contributed by ML, 24-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | finxpsuclem.1 | |
|
Assertion | finxpsuclem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finxpsuclem.1 | |
|
2 | peano2 | |
|
3 | 2 | adantr | |
4 | 1on | |
|
5 | 4 | onordi | |
6 | nnord | |
|
7 | ordsseleq | |
|
8 | 5 6 7 | sylancr | |
9 | 8 | biimpa | |
10 | elelsuc | |
|
11 | 10 | a1i | |
12 | sucidg | |
|
13 | eleq1 | |
|
14 | 12 13 | syl5ibrcom | |
15 | 11 14 | jaod | |
16 | 15 | adantr | |
17 | 9 16 | mpd | |
18 | 1 | finxpreclem6 | |
19 | 3 17 18 | syl2anc | |
20 | 19 | sselda | |
21 | 2 | ad2antrr | |
22 | df-2o | |
|
23 | ordsucsssuc | |
|
24 | 5 6 23 | sylancr | |
25 | 24 | biimpa | |
26 | 22 25 | eqsstrid | |
27 | 26 | adantr | |
28 | simpr | |
|
29 | 1 | finxpreclem4 | |
30 | 21 27 28 29 | syl21anc | |
31 | ordunisuc | |
|
32 | 6 31 | syl | |
33 | opeq1 | |
|
34 | rdgeq2 | |
|
35 | 33 34 | syl | |
36 | 32 35 | syl | |
37 | 36 32 | fveq12d | |
38 | 37 | ad2antrr | |
39 | 30 38 | eqtrd | |
40 | 39 | eqeq2d | |
41 | 1 | dffinxpf | |
42 | 41 | eqabri | |
43 | 2 | biantrurd | |
44 | 42 43 | bitr4id | |
45 | 44 | ad2antrr | |
46 | fvex | |
|
47 | opeq2 | |
|
48 | rdgeq2 | |
|
49 | 47 48 | syl | |
50 | 49 | fveq1d | |
51 | 50 | eqeq2d | |
52 | 51 | anbi2d | |
53 | 1 | dffinxpf | |
54 | 46 52 53 | elab2 | |
55 | 54 | baib | |
56 | 55 | ad2antrr | |
57 | 40 45 56 | 3bitr4d | |
58 | 57 | biimpd | |
59 | 58 | impancom | |
60 | 20 59 | mpd | |
61 | 60 | ex | |
62 | 20 | ex | |
63 | 61 62 | jcad | |
64 | 57 | exbiri | |
65 | 64 | impd | |
66 | 65 | ancomsd | |
67 | 63 66 | impbid | |
68 | elxp8 | |
|
69 | 67 68 | bitr4di | |
70 | 69 | eqrdv | |