Metamath Proof Explorer


Theorem flflp1

Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion flflp1 ABABA<B+1

Proof

Step Hyp Ref Expression
1 flltp1 AA<A+1
2 1 ad3antrrr ABABB<AA<A+1
3 flval BB=ιx|xBB<x+1
4 3 ad3antlr ABABB<AB=ιx|xBB<x+1
5 simplr ABABB<AAB
6 1 adantr ABA<A+1
7 reflcl AA
8 peano2re AA+1
9 7 8 syl AA+1
10 9 adantl BAA+1
11 lttr BAA+1B<AA<A+1B<A+1
12 10 11 mpd3an3 BAB<AA<A+1B<A+1
13 12 ancoms ABB<AA<A+1B<A+1
14 6 13 mpan2d ABB<AB<A+1
15 14 imp ABB<AB<A+1
16 15 adantlr ABABB<AB<A+1
17 flcl AA
18 rebtwnz B∃!xxBB<x+1
19 breq1 x=AxBAB
20 oveq1 x=Ax+1=A+1
21 20 breq2d x=AB<x+1B<A+1
22 19 21 anbi12d x=AxBB<x+1ABB<A+1
23 22 riota2 A∃!xxBB<x+1ABB<A+1ιx|xBB<x+1=A
24 17 18 23 syl2an ABABB<A+1ιx|xBB<x+1=A
25 24 ad2antrr ABABB<AABB<A+1ιx|xBB<x+1=A
26 5 16 25 mpbi2and ABABB<Aιx|xBB<x+1=A
27 4 26 eqtrd ABABB<AB=A
28 27 oveq1d ABABB<AB+1=A+1
29 2 28 breqtrrd ABABB<AA<B+1
30 29 ex ABABB<AA<B+1
31 lenlt ABAB¬B<A
32 flltp1 BB<B+1
33 32 adantl ABB<B+1
34 reflcl BB
35 peano2re BB+1
36 34 35 syl BB+1
37 36 adantl ABB+1
38 lelttr ABB+1ABB<B+1A<B+1
39 37 38 mpd3an3 ABABB<B+1A<B+1
40 33 39 mpan2d ABABA<B+1
41 31 40 sylbird AB¬B<AA<B+1
42 41 adantr ABAB¬B<AA<B+1
43 30 42 pm2.61d ABABA<B+1
44 flval AA=ιx|xAA<x+1
45 44 ad3antrrr ABA<B+1B<AA=ιx|xAA<x+1
46 34 ad2antlr ABB<AB
47 simpll ABB<AA
48 simplr ABB<AB
49 flle BBB
50 49 ad2antlr ABB<ABB
51 simpr ABB<AB<A
52 46 48 47 50 51 lelttrd ABB<AB<A
53 46 47 52 ltled ABB<ABA
54 53 adantlr ABA<B+1B<ABA
55 simplr ABA<B+1B<AA<B+1
56 flcl BB
57 rebtwnz A∃!xxAA<x+1
58 breq1 x=BxABA
59 oveq1 x=Bx+1=B+1
60 59 breq2d x=BA<x+1A<B+1
61 58 60 anbi12d x=BxAA<x+1BAA<B+1
62 61 riota2 B∃!xxAA<x+1BAA<B+1ιx|xAA<x+1=B
63 56 57 62 syl2anr ABBAA<B+1ιx|xAA<x+1=B
64 63 ad2antrr ABA<B+1B<ABAA<B+1ιx|xAA<x+1=B
65 54 55 64 mpbi2and ABA<B+1B<Aιx|xAA<x+1=B
66 45 65 eqtrd ABA<B+1B<AA=B
67 49 ad3antlr ABA<B+1B<ABB
68 66 67 eqbrtrd ABA<B+1B<AAB
69 68 ex ABA<B+1B<AAB
70 flle AAA
71 70 adantr ABAA
72 7 adantr ABA
73 letr AABAAABAB
74 73 3coml ABAAAABAB
75 72 74 mpd3an3 ABAAABAB
76 71 75 mpand ABABAB
77 31 76 sylbird AB¬B<AAB
78 77 adantr ABA<B+1¬B<AAB
79 69 78 pm2.61d ABA<B+1AB
80 43 79 impbida ABABA<B+1