Metamath Proof Explorer


Theorem fnse

Description: Condition for the well-order in fnwe to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses fnse.1 T=xy|xAyAFxRFyFx=FyxSy
fnse.2 φF:AB
fnse.3 φRSeB
fnse.4 φF-1wV
Assertion fnse φTSeA

Proof

Step Hyp Ref Expression
1 fnse.1 T=xy|xAyAFxRFyFx=FyxSy
2 fnse.2 φF:AB
3 fnse.3 φRSeB
4 fnse.4 φF-1wV
5 2 ffvelcdmda φzAFzB
6 seex RSeBFzBuB|uRFzV
7 3 5 6 syl2an2r φzAuB|uRFzV
8 snex FzV
9 unexg uB|uRFzVFzVuB|uRFzFzV
10 7 8 9 sylancl φzAuB|uRFzFzV
11 imaeq2 w=uB|uRFzFzF-1w=F-1uB|uRFzFz
12 11 eleq1d w=uB|uRFzFzF-1wVF-1uB|uRFzFzV
13 12 imbi2d w=uB|uRFzFzφF-1wVφF-1uB|uRFzFzV
14 13 4 vtoclg uB|uRFzFzVφF-1uB|uRFzFzV
15 14 impcom φuB|uRFzFzVF-1uB|uRFzFzV
16 10 15 syldan φzAF-1uB|uRFzFzV
17 inss2 AT-1zT-1z
18 vex wV
19 18 eliniseg zVwT-1zwTz
20 19 elv wT-1zwTz
21 fveq2 x=wFx=Fw
22 fveq2 y=zFy=Fz
23 21 22 breqan12d x=wy=zFxRFyFwRFz
24 21 22 eqeqan12d x=wy=zFx=FyFw=Fz
25 breq12 x=wy=zxSywSz
26 24 25 anbi12d x=wy=zFx=FyxSyFw=FzwSz
27 23 26 orbi12d x=wy=zFxRFyFx=FyxSyFwRFzFw=FzwSz
28 27 1 brab2a wTzwAzAFwRFzFw=FzwSz
29 2 ffvelcdmda φwAFwB
30 29 adantrr φwAzAFwB
31 breq1 u=FwuRFzFwRFz
32 31 elrab3 FwBFwuB|uRFzFwRFz
33 30 32 syl φwAzAFwuB|uRFzFwRFz
34 33 biimprd φwAzAFwRFzFwuB|uRFz
35 simpl Fw=FzwSzFw=Fz
36 fvex FwV
37 36 elsn FwFzFw=Fz
38 35 37 sylibr Fw=FzwSzFwFz
39 38 a1i φwAzAFw=FzwSzFwFz
40 34 39 orim12d φwAzAFwRFzFw=FzwSzFwuB|uRFzFwFz
41 elun FwuB|uRFzFzFwuB|uRFzFwFz
42 40 41 syl6ibr φwAzAFwRFzFw=FzwSzFwuB|uRFzFz
43 simprl φwAzAwA
44 42 43 jctild φwAzAFwRFzFw=FzwSzwAFwuB|uRFzFz
45 2 ffnd φFFnA
46 45 adantr φwAzAFFnA
47 elpreima FFnAwF-1uB|uRFzFzwAFwuB|uRFzFz
48 46 47 syl φwAzAwF-1uB|uRFzFzwAFwuB|uRFzFz
49 44 48 sylibrd φwAzAFwRFzFw=FzwSzwF-1uB|uRFzFz
50 49 expimpd φwAzAFwRFzFw=FzwSzwF-1uB|uRFzFz
51 28 50 biimtrid φwTzwF-1uB|uRFzFz
52 20 51 biimtrid φwT-1zwF-1uB|uRFzFz
53 52 ssrdv φT-1zF-1uB|uRFzFz
54 17 53 sstrid φAT-1zF-1uB|uRFzFz
55 54 adantr φzAAT-1zF-1uB|uRFzFz
56 16 55 ssexd φzAAT-1zV
57 56 ralrimiva φzAAT-1zV
58 dfse2 TSeAzAAT-1zV
59 57 58 sylibr φTSeA