Metamath Proof Explorer


Theorem fprodexp

Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodexp.kph kφ
fprodexp.n φN0
fprodexp.a φAFin
fprodexp.b φkAB
Assertion fprodexp φkABN=kABN

Proof

Step Hyp Ref Expression
1 fprodexp.kph kφ
2 fprodexp.n φN0
3 fprodexp.a φAFin
4 fprodexp.b φkAB
5 prodeq1 x=kxBN=kBN
6 prodeq1 x=kxB=kB
7 6 oveq1d x=kxBN=kBN
8 5 7 eqeq12d x=kxBN=kxBNkBN=kBN
9 prodeq1 x=ykxBN=kyBN
10 prodeq1 x=ykxB=kyB
11 10 oveq1d x=ykxBN=kyBN
12 9 11 eqeq12d x=ykxBN=kxBNkyBN=kyBN
13 prodeq1 x=yzkxBN=kyzBN
14 prodeq1 x=yzkxB=kyzB
15 14 oveq1d x=yzkxBN=kyzBN
16 13 15 eqeq12d x=yzkxBN=kxBNkyzBN=kyzBN
17 prodeq1 x=AkxBN=kABN
18 prodeq1 x=AkxB=kAB
19 18 oveq1d x=AkxBN=kABN
20 17 19 eqeq12d x=AkxBN=kxBNkABN=kABN
21 2 nn0zd φN
22 1exp N1N=1
23 21 22 syl φ1N=1
24 23 eqcomd φ1=1N
25 prod0 kBN=1
26 25 a1i φkBN=1
27 prod0 kB=1
28 27 oveq1i kBN=1N
29 28 a1i φkBN=1N
30 24 26 29 3eqtr4d φkBN=kBN
31 nfv kyAzAy
32 1 31 nfan kφyAzAy
33 3 adantr φyAAFin
34 simpr φyAyA
35 ssfi AFinyAyFin
36 33 34 35 syl2anc φyAyFin
37 36 adantrr φyAzAyyFin
38 simpll φyAkyφ
39 34 sselda φyAkykA
40 38 39 4 syl2anc φyAkyB
41 40 adantlrr φyAzAykyB
42 32 37 41 fprodclf φyAzAykyB
43 simpl φyAzAyφ
44 simprr φyAzAyzAy
45 44 eldifad φyAzAyzA
46 nfv kzA
47 1 46 nfan kφzA
48 nfcsb1v _kz/kB
49 48 nfel1 kz/kB
50 47 49 nfim kφzAz/kB
51 eleq1w k=zkAzA
52 51 anbi2d k=zφkAφzA
53 csbeq1a k=zB=z/kB
54 53 eleq1d k=zBz/kB
55 52 54 imbi12d k=zφkABφzAz/kB
56 50 55 4 chvarfv φzAz/kB
57 43 45 56 syl2anc φyAzAyz/kB
58 2 adantr φyAzAyN0
59 mulexp kyBz/kBN0kyBz/kBN=kyBNz/kBN
60 42 57 58 59 syl3anc φyAzAykyBz/kBN=kyBNz/kBN
61 60 eqcomd φyAzAykyBNz/kBN=kyBz/kBN
62 61 adantr φyAzAykyBN=kyBNkyBNz/kBN=kyBz/kBN
63 nfcv _k^
64 nfcv _kN
65 48 63 64 nfov _kz/kBN
66 44 eldifbd φyAzAy¬zy
67 2 ad2antrr φyAkyN0
68 40 67 expcld φyAkyBN
69 68 adantlrr φyAzAykyBN
70 53 oveq1d k=zBN=z/kBN
71 57 58 expcld φyAzAyz/kBN
72 32 65 37 44 66 69 70 71 fprodsplitsn φyAzAykyzBN=kyBNz/kBN
73 72 adantr φyAzAykyBN=kyBNkyzBN=kyBNz/kBN
74 oveq1 kyBN=kyBNkyBNz/kBN=kyBNz/kBN
75 74 adantl φyAzAykyBN=kyBNkyBNz/kBN=kyBNz/kBN
76 73 75 eqtrd φyAzAykyBN=kyBNkyzBN=kyBNz/kBN
77 32 48 37 44 66 41 53 57 fprodsplitsn φyAzAykyzB=kyBz/kB
78 77 adantr φyAzAykyBN=kyBNkyzB=kyBz/kB
79 78 oveq1d φyAzAykyBN=kyBNkyzBN=kyBz/kBN
80 62 76 79 3eqtr4d φyAzAykyBN=kyBNkyzBN=kyzBN
81 80 ex φyAzAykyBN=kyBNkyzBN=kyzBN
82 8 12 16 20 30 81 3 findcard2d φkABN=kABN