Metamath Proof Explorer


Theorem frgrncvvdeqlem9

Description: Lemma 9 for frgrncvvdeq . This corresponds to statement 3 in Huneke p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v1 V=VtxG
frgrncvvdeq.e E=EdgG
frgrncvvdeq.nx D=GNeighbVtxX
frgrncvvdeq.ny N=GNeighbVtxY
frgrncvvdeq.x φXV
frgrncvvdeq.y φYV
frgrncvvdeq.ne φXY
frgrncvvdeq.xy φYD
frgrncvvdeq.f φGFriendGraph
frgrncvvdeq.a A=xDιyN|xyE
Assertion frgrncvvdeqlem9 φA:DontoN

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V=VtxG
2 frgrncvvdeq.e E=EdgG
3 frgrncvvdeq.nx D=GNeighbVtxX
4 frgrncvvdeq.ny N=GNeighbVtxY
5 frgrncvvdeq.x φXV
6 frgrncvvdeq.y φYV
7 frgrncvvdeq.ne φXY
8 frgrncvvdeq.xy φYD
9 frgrncvvdeq.f φGFriendGraph
10 frgrncvvdeq.a A=xDιyN|xyE
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem4 φA:DN
12 9 adantr φnNGFriendGraph
13 4 eleq2i nNnGNeighbVtxY
14 1 nbgrisvtx nGNeighbVtxYnV
15 14 a1i φnGNeighbVtxYnV
16 13 15 biimtrid φnNnV
17 16 imp φnNnV
18 5 adantr φnNXV
19 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1 φXN
20 df-nel XN¬XN
21 nelelne ¬XNnNnX
22 20 21 sylbi XNnNnX
23 19 22 syl φnNnX
24 23 imp φnNnX
25 17 18 24 3jca φnNnVXVnX
26 12 25 jca φnNGFriendGraphnVXVnX
27 1 2 frcond2 GFriendGraphnVXVnX∃!mVnmEmXE
28 27 imp GFriendGraphnVXVnX∃!mVnmEmXE
29 reurex ∃!mVnmEmXEmVnmEmXE
30 df-rex mVnmEmXEmmVnmEmXE
31 29 30 sylib ∃!mVnmEmXEmmVnmEmXE
32 26 28 31 3syl φnNmmVnmEmXE
33 frgrusgr GFriendGraphGUSGraph
34 2 nbusgreledg GUSGraphmGNeighbVtxXmXE
35 34 bicomd GUSGraphmXEmGNeighbVtxX
36 9 33 35 3syl φmXEmGNeighbVtxX
37 36 biimpa φmXEmGNeighbVtxX
38 3 eleq2i mDmGNeighbVtxX
39 37 38 sylibr φmXEmD
40 39 ad2ant2rl φnNnmEmXEmD
41 2 nbusgreledg GUSGraphnGNeighbVtxmnmE
42 41 biimpar GUSGraphnmEnGNeighbVtxm
43 42 a1d GUSGraphnmEmXEnGNeighbVtxm
44 43 expimpd GUSGraphnmEmXEnGNeighbVtxm
45 9 33 44 3syl φnmEmXEnGNeighbVtxm
46 45 adantr φnNnmEmXEnGNeighbVtxm
47 46 imp φnNnmEmXEnGNeighbVtxm
48 elin nGNeighbVtxmNnGNeighbVtxmnN
49 simpl φmXEφ
50 49 39 jca φmXEφmD
51 preq1 x=mxy=my
52 51 eleq1d x=mxyEmyE
53 52 riotabidv x=mιyN|xyE=ιyN|myE
54 53 cbvmptv xDιyN|xyE=mDιyN|myE
55 10 54 eqtri A=mDιyN|myE
56 1 2 3 4 5 6 7 8 9 55 frgrncvvdeqlem5 φmDAm=GNeighbVtxmN
57 eleq2 GNeighbVtxmN=AmnGNeighbVtxmNnAm
58 57 eqcoms Am=GNeighbVtxmNnGNeighbVtxmNnAm
59 elsni nAmn=Am
60 58 59 syl6bi Am=GNeighbVtxmNnGNeighbVtxmNn=Am
61 50 56 60 3syl φmXEnGNeighbVtxmNn=Am
62 61 expcom mXEφnGNeighbVtxmNn=Am
63 62 com3r nGNeighbVtxmNmXEφn=Am
64 48 63 sylbir nGNeighbVtxmnNmXEφn=Am
65 64 ex nGNeighbVtxmnNmXEφn=Am
66 65 com14 φnNmXEnGNeighbVtxmn=Am
67 66 imp φnNmXEnGNeighbVtxmn=Am
68 67 adantld φnNnmEmXEnGNeighbVtxmn=Am
69 68 imp φnNnmEmXEnGNeighbVtxmn=Am
70 47 69 mpd φnNnmEmXEn=Am
71 40 70 jca φnNnmEmXEmDn=Am
72 71 ex φnNnmEmXEmDn=Am
73 72 adantld φnNmVnmEmXEmDn=Am
74 73 eximdv φnNmmVnmEmXEmmDn=Am
75 32 74 mpd φnNmmDn=Am
76 df-rex mDn=AmmmDn=Am
77 75 76 sylibr φnNmDn=Am
78 77 ralrimiva φnNmDn=Am
79 dffo3 A:DontoNA:DNnNmDn=Am
80 11 78 79 sylanbrc φA:DontoN