Metamath Proof Explorer


Theorem frlmgsum

Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 5-Jul-2015) (Revised by AV, 23-Jun-2019)

Ref Expression
Hypotheses frlmgsum.y Y=RfreeLModI
frlmgsum.b B=BaseY
frlmgsum.z 0˙=0Y
frlmgsum.i φIV
frlmgsum.j φJW
frlmgsum.r φRRing
frlmgsum.f φyJxIUB
frlmgsum.w φfinSupp0˙yJxIU
Assertion frlmgsum φYyJxIU=xIRyJU

Proof

Step Hyp Ref Expression
1 frlmgsum.y Y=RfreeLModI
2 frlmgsum.b B=BaseY
3 frlmgsum.z 0˙=0Y
4 frlmgsum.i φIV
5 frlmgsum.j φJW
6 frlmgsum.r φRRing
7 frlmgsum.f φyJxIUB
8 frlmgsum.w φfinSupp0˙yJxIU
9 1 2 frlmpws RRingIVY=ringLModR𝑠I𝑠B
10 6 4 9 syl2anc φY=ringLModR𝑠I𝑠B
11 10 oveq1d φYyJxIU=ringLModR𝑠I𝑠ByJxIU
12 eqid BaseringLModR𝑠I=BaseringLModR𝑠I
13 eqid +ringLModR𝑠I=+ringLModR𝑠I
14 eqid ringLModR𝑠I𝑠B=ringLModR𝑠I𝑠B
15 ovexd φringLModR𝑠IV
16 eqid LSubSpringLModR𝑠I=LSubSpringLModR𝑠I
17 1 2 16 frlmlss RRingIVBLSubSpringLModR𝑠I
18 6 4 17 syl2anc φBLSubSpringLModR𝑠I
19 12 16 lssss BLSubSpringLModR𝑠IBBaseringLModR𝑠I
20 18 19 syl φBBaseringLModR𝑠I
21 7 fmpttd φyJxIU:JB
22 rlmlmod RRingringLModRLMod
23 6 22 syl φringLModRLMod
24 eqid ringLModR𝑠I=ringLModR𝑠I
25 24 pwslmod ringLModRLModIVringLModR𝑠ILMod
26 23 4 25 syl2anc φringLModR𝑠ILMod
27 eqid 0ringLModR𝑠I=0ringLModR𝑠I
28 27 16 lss0cl ringLModR𝑠ILModBLSubSpringLModR𝑠I0ringLModR𝑠IB
29 26 18 28 syl2anc φ0ringLModR𝑠IB
30 lmodcmn ringLModRLModringLModRCMnd
31 23 30 syl φringLModRCMnd
32 cmnmnd ringLModRCMndringLModRMnd
33 31 32 syl φringLModRMnd
34 24 pwsmnd ringLModRMndIVringLModR𝑠IMnd
35 33 4 34 syl2anc φringLModR𝑠IMnd
36 12 13 27 mndlrid ringLModR𝑠IMndxBaseringLModR𝑠I0ringLModR𝑠I+ringLModR𝑠Ix=xx+ringLModR𝑠I0ringLModR𝑠I=x
37 35 36 sylan φxBaseringLModR𝑠I0ringLModR𝑠I+ringLModR𝑠Ix=xx+ringLModR𝑠I0ringLModR𝑠I=x
38 12 13 14 15 5 20 21 29 37 gsumress φringLModR𝑠IyJxIU=ringLModR𝑠I𝑠ByJxIU
39 rlmbas BaseR=BaseringLModR
40 eqid BaseR=BaseR
41 1 40 2 frlmbasf IVxIUBxIU:IBaseR
42 4 7 41 syl2an2r φyJxIU:IBaseR
43 42 fvmptelcdm φyJxIUBaseR
44 43 an32s φxIyJUBaseR
45 44 anasss φxIyJUBaseR
46 10 fveq2d φ0Y=0ringLModR𝑠I𝑠B
47 16 lsssubg ringLModR𝑠ILModBLSubSpringLModR𝑠IBSubGrpringLModR𝑠I
48 26 18 47 syl2anc φBSubGrpringLModR𝑠I
49 14 27 subg0 BSubGrpringLModR𝑠I0ringLModR𝑠I=0ringLModR𝑠I𝑠B
50 48 49 syl φ0ringLModR𝑠I=0ringLModR𝑠I𝑠B
51 46 50 eqtr4d φ0Y=0ringLModR𝑠I
52 3 51 eqtrid φ0˙=0ringLModR𝑠I
53 8 52 breqtrd φfinSupp0ringLModR𝑠IyJxIU
54 24 39 27 4 5 31 45 53 pwsgsum φringLModR𝑠IyJxIU=xIringLModRyJU
55 5 mptexd φyJUV
56 fvexd φringLModRV
57 39 a1i φBaseR=BaseringLModR
58 rlmplusg +R=+ringLModR
59 58 a1i φ+R=+ringLModR
60 55 6 56 57 59 gsumpropd φRyJU=ringLModRyJU
61 60 mpteq2dv φxIRyJU=xIringLModRyJU
62 54 61 eqtr4d φringLModR𝑠IyJxIU=xIRyJU
63 11 38 62 3eqtr2d φYyJxIU=xIRyJU