Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 5-Jul-2015) (Revised by AV, 23-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmgsum.y | |
|
frlmgsum.b | |
||
frlmgsum.z | |
||
frlmgsum.i | |
||
frlmgsum.j | |
||
frlmgsum.r | |
||
frlmgsum.f | |
||
frlmgsum.w | |
||
Assertion | frlmgsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmgsum.y | |
|
2 | frlmgsum.b | |
|
3 | frlmgsum.z | |
|
4 | frlmgsum.i | |
|
5 | frlmgsum.j | |
|
6 | frlmgsum.r | |
|
7 | frlmgsum.f | |
|
8 | frlmgsum.w | |
|
9 | 1 2 | frlmpws | |
10 | 6 4 9 | syl2anc | |
11 | 10 | oveq1d | |
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | ovexd | |
|
16 | eqid | |
|
17 | 1 2 16 | frlmlss | |
18 | 6 4 17 | syl2anc | |
19 | 12 16 | lssss | |
20 | 18 19 | syl | |
21 | 7 | fmpttd | |
22 | rlmlmod | |
|
23 | 6 22 | syl | |
24 | eqid | |
|
25 | 24 | pwslmod | |
26 | 23 4 25 | syl2anc | |
27 | eqid | |
|
28 | 27 16 | lss0cl | |
29 | 26 18 28 | syl2anc | |
30 | lmodcmn | |
|
31 | 23 30 | syl | |
32 | cmnmnd | |
|
33 | 31 32 | syl | |
34 | 24 | pwsmnd | |
35 | 33 4 34 | syl2anc | |
36 | 12 13 27 | mndlrid | |
37 | 35 36 | sylan | |
38 | 12 13 14 15 5 20 21 29 37 | gsumress | |
39 | rlmbas | |
|
40 | eqid | |
|
41 | 1 40 2 | frlmbasf | |
42 | 4 7 41 | syl2an2r | |
43 | 42 | fvmptelcdm | |
44 | 43 | an32s | |
45 | 44 | anasss | |
46 | 10 | fveq2d | |
47 | 16 | lsssubg | |
48 | 26 18 47 | syl2anc | |
49 | 14 27 | subg0 | |
50 | 48 49 | syl | |
51 | 46 50 | eqtr4d | |
52 | 3 51 | eqtrid | |
53 | 8 52 | breqtrd | |
54 | 24 39 27 4 5 31 45 53 | pwsgsum | |
55 | 5 | mptexd | |
56 | fvexd | |
|
57 | 39 | a1i | |
58 | rlmplusg | |
|
59 | 58 | a1i | |
60 | 55 6 56 57 59 | gsumpropd | |
61 | 60 | mpteq2dv | |
62 | 54 61 | eqtr4d | |
63 | 11 38 62 | 3eqtr2d | |