Metamath Proof Explorer


Theorem frmdup1

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses frmdup.m M=freeMndI
frmdup.b B=BaseG
frmdup.e E=xWordIGAx
frmdup.g φGMnd
frmdup.i φIX
frmdup.a φA:IB
Assertion frmdup1 φEMMndHomG

Proof

Step Hyp Ref Expression
1 frmdup.m M=freeMndI
2 frmdup.b B=BaseG
3 frmdup.e E=xWordIGAx
4 frmdup.g φGMnd
5 frmdup.i φIX
6 frmdup.a φA:IB
7 1 frmdmnd IXMMnd
8 5 7 syl φMMnd
9 4 adantr φxWordIGMnd
10 simpr φxWordIxWordI
11 6 adantr φxWordIA:IB
12 wrdco xWordIA:IBAxWordB
13 10 11 12 syl2anc φxWordIAxWordB
14 2 gsumwcl GMndAxWordBGAxB
15 9 13 14 syl2anc φxWordIGAxB
16 15 3 fmptd φE:WordIB
17 eqid BaseM=BaseM
18 1 17 frmdbas IXBaseM=WordI
19 5 18 syl φBaseM=WordI
20 19 feq2d φE:BaseMBE:WordIB
21 16 20 mpbird φE:BaseMB
22 1 17 frmdelbas yBaseMyWordI
23 22 ad2antrl φyBaseMzBaseMyWordI
24 1 17 frmdelbas zBaseMzWordI
25 24 ad2antll φyBaseMzBaseMzWordI
26 6 adantr φyBaseMzBaseMA:IB
27 ccatco yWordIzWordIA:IBAy++z=Ay++Az
28 23 25 26 27 syl3anc φyBaseMzBaseMAy++z=Ay++Az
29 28 oveq2d φyBaseMzBaseMGAy++z=GAy++Az
30 4 adantr φyBaseMzBaseMGMnd
31 wrdco yWordIA:IBAyWordB
32 23 26 31 syl2anc φyBaseMzBaseMAyWordB
33 wrdco zWordIA:IBAzWordB
34 25 26 33 syl2anc φyBaseMzBaseMAzWordB
35 eqid +G=+G
36 2 35 gsumccat GMndAyWordBAzWordBGAy++Az=GAy+GGAz
37 30 32 34 36 syl3anc φyBaseMzBaseMGAy++Az=GAy+GGAz
38 29 37 eqtrd φyBaseMzBaseMGAy++z=GAy+GGAz
39 eqid +M=+M
40 1 17 39 frmdadd yBaseMzBaseMy+Mz=y++z
41 40 adantl φyBaseMzBaseMy+Mz=y++z
42 41 fveq2d φyBaseMzBaseMEy+Mz=Ey++z
43 ccatcl yWordIzWordIy++zWordI
44 23 25 43 syl2anc φyBaseMzBaseMy++zWordI
45 coeq2 x=y++zAx=Ay++z
46 45 oveq2d x=y++zGAx=GAy++z
47 ovex GAxV
48 46 3 47 fvmpt3i y++zWordIEy++z=GAy++z
49 44 48 syl φyBaseMzBaseMEy++z=GAy++z
50 42 49 eqtrd φyBaseMzBaseMEy+Mz=GAy++z
51 coeq2 x=yAx=Ay
52 51 oveq2d x=yGAx=GAy
53 52 3 47 fvmpt3i yWordIEy=GAy
54 coeq2 x=zAx=Az
55 54 oveq2d x=zGAx=GAz
56 55 3 47 fvmpt3i zWordIEz=GAz
57 53 56 oveqan12d yWordIzWordIEy+GEz=GAy+GGAz
58 23 25 57 syl2anc φyBaseMzBaseMEy+GEz=GAy+GGAz
59 38 50 58 3eqtr4d φyBaseMzBaseMEy+Mz=Ey+GEz
60 59 ralrimivva φyBaseMzBaseMEy+Mz=Ey+GEz
61 wrd0 WordI
62 coeq2 x=Ax=A
63 co02 A=
64 62 63 eqtrdi x=Ax=
65 64 oveq2d x=GAx=G
66 eqid 0G=0G
67 66 gsum0 G=0G
68 65 67 eqtrdi x=GAx=0G
69 68 3 47 fvmpt3i WordIE=0G
70 61 69 mp1i φE=0G
71 21 60 70 3jca φE:BaseMByBaseMzBaseMEy+Mz=Ey+GEzE=0G
72 1 frmd0 =0M
73 17 2 39 35 72 66 ismhm EMMndHomGMMndGMndE:BaseMByBaseMzBaseMEy+Mz=Ey+GEzE=0G
74 8 4 71 73 syl21anbrc φEMMndHomG