Metamath Proof Explorer


Theorem frmdup3lem

Description: Lemma for frmdup3 . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses frmdup3.m M=freeMndI
frmdup3.b B=BaseG
frmdup3.u U=varFMndI
Assertion frmdup3lem GMndIVA:IBFMMndHomGFU=AF=xWordIGAx

Proof

Step Hyp Ref Expression
1 frmdup3.m M=freeMndI
2 frmdup3.b B=BaseG
3 frmdup3.u U=varFMndI
4 eqid BaseM=BaseM
5 4 2 mhmf FMMndHomGF:BaseMB
6 5 ad2antrl GMndIVA:IBFMMndHomGFU=AF:BaseMB
7 1 4 frmdbas IVBaseM=WordI
8 7 3ad2ant2 GMndIVA:IBBaseM=WordI
9 8 adantr GMndIVA:IBFMMndHomGFU=ABaseM=WordI
10 9 feq2d GMndIVA:IBFMMndHomGFU=AF:BaseMBF:WordIB
11 6 10 mpbid GMndIVA:IBFMMndHomGFU=AF:WordIB
12 11 feqmptd GMndIVA:IBFMMndHomGFU=AF=xWordIFx
13 simplrl GMndIVA:IBFMMndHomGFU=AxWordIFMMndHomG
14 simpr GMndIVA:IBFMMndHomGFU=AxWordIxWordI
15 3 vrmdf IVU:IWordI
16 15 3ad2ant2 GMndIVA:IBU:IWordI
17 8 feq3d GMndIVA:IBU:IBaseMU:IWordI
18 16 17 mpbird GMndIVA:IBU:IBaseM
19 18 ad2antrr GMndIVA:IBFMMndHomGFU=AxWordIU:IBaseM
20 wrdco xWordIU:IBaseMUxWordBaseM
21 14 19 20 syl2anc GMndIVA:IBFMMndHomGFU=AxWordIUxWordBaseM
22 4 gsumwmhm FMMndHomGUxWordBaseMFMUx=GFUx
23 13 21 22 syl2anc GMndIVA:IBFMMndHomGFU=AxWordIFMUx=GFUx
24 simpll2 GMndIVA:IBFMMndHomGFU=AxWordIIV
25 1 3 frmdgsum IVxWordIMUx=x
26 24 14 25 syl2anc GMndIVA:IBFMMndHomGFU=AxWordIMUx=x
27 26 fveq2d GMndIVA:IBFMMndHomGFU=AxWordIFMUx=Fx
28 coass FUx=FUx
29 simplrr GMndIVA:IBFMMndHomGFU=AxWordIFU=A
30 29 coeq1d GMndIVA:IBFMMndHomGFU=AxWordIFUx=Ax
31 28 30 eqtr3id GMndIVA:IBFMMndHomGFU=AxWordIFUx=Ax
32 31 oveq2d GMndIVA:IBFMMndHomGFU=AxWordIGFUx=GAx
33 23 27 32 3eqtr3d GMndIVA:IBFMMndHomGFU=AxWordIFx=GAx
34 33 mpteq2dva GMndIVA:IBFMMndHomGFU=AxWordIFx=xWordIGAx
35 12 34 eqtrd GMndIVA:IBFMMndHomGFU=AF=xWordIGAx