Description: Lemma for frmdup3 . (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frmdup3.m | |
|
frmdup3.b | |
||
frmdup3.u | |
||
Assertion | frmdup3lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdup3.m | |
|
2 | frmdup3.b | |
|
3 | frmdup3.u | |
|
4 | eqid | |
|
5 | 4 2 | mhmf | |
6 | 5 | ad2antrl | |
7 | 1 4 | frmdbas | |
8 | 7 | 3ad2ant2 | |
9 | 8 | adantr | |
10 | 9 | feq2d | |
11 | 6 10 | mpbid | |
12 | 11 | feqmptd | |
13 | simplrl | |
|
14 | simpr | |
|
15 | 3 | vrmdf | |
16 | 15 | 3ad2ant2 | |
17 | 8 | feq3d | |
18 | 16 17 | mpbird | |
19 | 18 | ad2antrr | |
20 | wrdco | |
|
21 | 14 19 20 | syl2anc | |
22 | 4 | gsumwmhm | |
23 | 13 21 22 | syl2anc | |
24 | simpll2 | |
|
25 | 1 3 | frmdgsum | |
26 | 24 14 25 | syl2anc | |
27 | 26 | fveq2d | |
28 | coass | |
|
29 | simplrr | |
|
30 | 29 | coeq1d | |
31 | 28 30 | eqtr3id | |
32 | 31 | oveq2d | |
33 | 23 27 32 | 3eqtr3d | |
34 | 33 | mpteq2dva | |
35 | 12 34 | eqtrd | |