| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdup3.m |
|
| 2 |
|
frmdup3.b |
|
| 3 |
|
frmdup3.u |
|
| 4 |
|
eqid |
|
| 5 |
4 2
|
mhmf |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
1 4
|
frmdbas |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
feq2d |
|
| 11 |
6 10
|
mpbid |
|
| 12 |
11
|
feqmptd |
|
| 13 |
|
simplrl |
|
| 14 |
|
simpr |
|
| 15 |
3
|
vrmdf |
|
| 16 |
15
|
3ad2ant2 |
|
| 17 |
8
|
feq3d |
|
| 18 |
16 17
|
mpbird |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
wrdco |
|
| 21 |
14 19 20
|
syl2anc |
|
| 22 |
4
|
gsumwmhm |
|
| 23 |
13 21 22
|
syl2anc |
|
| 24 |
|
simpll2 |
|
| 25 |
1 3
|
frmdgsum |
|
| 26 |
24 14 25
|
syl2anc |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
coass |
|
| 29 |
|
simplrr |
|
| 30 |
29
|
coeq1d |
|
| 31 |
28 30
|
eqtr3id |
|
| 32 |
31
|
oveq2d |
|
| 33 |
23 27 32
|
3eqtr3d |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
12 34
|
eqtrd |
|