Metamath Proof Explorer


Theorem fsovcnvlem

Description: The O operator, which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O=aV,bVf𝒫baybxa|yfx
fsovd.a φAV
fsovd.b φBW
fsovfvd.g G=AOB
fsovcnvlem.h H=BOA
Assertion fsovcnvlem φHG=I𝒫BA

Proof

Step Hyp Ref Expression
1 fsovd.fs O=aV,bVf𝒫baybxa|yfx
2 fsovd.a φAV
3 fsovd.b φBW
4 fsovfvd.g G=AOB
5 fsovcnvlem.h H=BOA
6 ssrab2 xA|yfxA
7 6 a1i φxA|yfxA
8 2 7 sselpwd φxA|yfx𝒫A
9 8 adantr φyBxA|yfx𝒫A
10 9 fmpttd φyBxA|yfx:B𝒫A
11 2 pwexd φ𝒫AV
12 11 3 elmapd φyBxA|yfx𝒫AByBxA|yfx:B𝒫A
13 10 12 mpbird φyBxA|yfx𝒫AB
14 13 adantr φf𝒫BAyBxA|yfx𝒫AB
15 1 2 3 fsovd φAOB=f𝒫BAyBxA|yfx
16 4 15 eqtrid φG=f𝒫BAyBxA|yfx
17 oveq2 a=d𝒫ba=𝒫bd
18 rabeq a=dxa|yfx=xd|yfx
19 18 mpteq2dv a=dybxa|yfx=ybxd|yfx
20 17 19 mpteq12dv a=df𝒫baybxa|yfx=f𝒫bdybxd|yfx
21 pweq b=c𝒫b=𝒫c
22 21 oveq1d b=c𝒫bd=𝒫cd
23 mpteq1 b=cybxd|yfx=ycxd|yfx
24 22 23 mpteq12dv b=cf𝒫bdybxd|yfx=f𝒫cdycxd|yfx
25 20 24 cbvmpov aV,bVf𝒫baybxa|yfx=dV,cVf𝒫cdycxd|yfx
26 eqid V=V
27 fveq1 f=gfx=gx
28 27 eleq2d f=gyfxygx
29 28 rabbidv f=gxd|yfx=xd|ygx
30 29 mpteq2dv f=gycxd|yfx=ycxd|ygx
31 30 cbvmptv f𝒫cdycxd|yfx=g𝒫cdycxd|ygx
32 eleq1w y=uygxugx
33 32 rabbidv y=uxd|ygx=xd|ugx
34 33 cbvmptv ycxd|ygx=ucxd|ugx
35 fveq2 x=vgx=gv
36 35 eleq2d x=vugxugv
37 36 cbvrabv xd|ugx=vd|ugv
38 37 mpteq2i ucxd|ugx=ucvd|ugv
39 34 38 eqtri ycxd|ygx=ucvd|ugv
40 39 mpteq2i g𝒫cdycxd|ygx=g𝒫cducvd|ugv
41 31 40 eqtri f𝒫cdycxd|yfx=g𝒫cducvd|ugv
42 26 26 41 mpoeq123i dV,cVf𝒫cdycxd|yfx=dV,cVg𝒫cducvd|ugv
43 1 25 42 3eqtri O=dV,cVg𝒫cducvd|ugv
44 43 3 2 fsovd φBOA=g𝒫ABuAvB|ugv
45 5 44 eqtrid φH=g𝒫ABuAvB|ugv
46 fveq1 g=yBxA|yfxgv=yBxA|yfxv
47 46 eleq2d g=yBxA|yfxugvuyBxA|yfxv
48 47 rabbidv g=yBxA|yfxvB|ugv=vB|uyBxA|yfxv
49 48 mpteq2dv g=yBxA|yfxuAvB|ugv=uAvB|uyBxA|yfxv
50 14 16 45 49 fmptco φHG=f𝒫BAuAvB|uyBxA|yfxv
51 eqidd φuAvByBxA|yfx=yBxA|yfx
52 eleq1w y=vyfxvfx
53 52 rabbidv y=vxA|yfx=xA|vfx
54 53 adantl φuAvBy=vxA|yfx=xA|vfx
55 simpr φuAvBvB
56 rabexg AVxA|vfxV
57 2 56 syl φxA|vfxV
58 57 ad2antrr φuAvBxA|vfxV
59 51 54 55 58 fvmptd φuAvByBxA|yfxv=xA|vfx
60 59 eleq2d φuAvBuyBxA|yfxvuxA|vfx
61 fveq2 x=ufx=fu
62 61 eleq2d x=uvfxvfu
63 62 elrab3 uAuxA|vfxvfu
64 63 ad2antlr φuAvBuxA|vfxvfu
65 60 64 bitrd φuAvBuyBxA|yfxvvfu
66 65 rabbidva φuAvB|uyBxA|yfxv=vB|vfu
67 66 adantlr φf𝒫BAuAvB|uyBxA|yfxv=vB|vfu
68 elmapi f𝒫BAf:A𝒫B
69 68 ad2antlr φf𝒫BAuAf:A𝒫B
70 simpr φf𝒫BAuAuA
71 69 70 ffvelcdmd φf𝒫BAuAfu𝒫B
72 71 elpwid φf𝒫BAuAfuB
73 sseqin2 fuBBfu=fu
74 72 73 sylib φf𝒫BAuABfu=fu
75 dfin5 Bfu=vB|vfu
76 74 75 eqtr3di φf𝒫BAuAfu=vB|vfu
77 67 76 eqtr4d φf𝒫BAuAvB|uyBxA|yfxv=fu
78 77 mpteq2dva φf𝒫BAuAvB|uyBxA|yfxv=uAfu
79 68 feqmptd f𝒫BAf=uAfu
80 79 adantl φf𝒫BAf=uAfu
81 78 80 eqtr4d φf𝒫BAuAvB|uyBxA|yfxv=f
82 81 mpteq2dva φf𝒫BAuAvB|uyBxA|yfxv=f𝒫BAf
83 mptresid I𝒫BA=f𝒫BAf
84 83 eqcomi f𝒫BAf=I𝒫BA
85 84 a1i φf𝒫BAf=I𝒫BA
86 50 82 85 3eqtrd φHG=I𝒫BA