| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsovd.fs |
|
| 2 |
|
fsovd.a |
|
| 3 |
|
fsovd.b |
|
| 4 |
|
fsovfvd.g |
|
| 5 |
|
fsovcnvlem.h |
|
| 6 |
|
ssrab2 |
|
| 7 |
6
|
a1i |
|
| 8 |
2 7
|
sselpwd |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
fmpttd |
|
| 11 |
2
|
pwexd |
|
| 12 |
11 3
|
elmapd |
|
| 13 |
10 12
|
mpbird |
|
| 14 |
13
|
adantr |
|
| 15 |
1 2 3
|
fsovd |
|
| 16 |
4 15
|
eqtrid |
|
| 17 |
|
oveq2 |
|
| 18 |
|
rabeq |
|
| 19 |
18
|
mpteq2dv |
|
| 20 |
17 19
|
mpteq12dv |
|
| 21 |
|
pweq |
|
| 22 |
21
|
oveq1d |
|
| 23 |
|
mpteq1 |
|
| 24 |
22 23
|
mpteq12dv |
|
| 25 |
20 24
|
cbvmpov |
|
| 26 |
|
eqid |
|
| 27 |
|
fveq1 |
|
| 28 |
27
|
eleq2d |
|
| 29 |
28
|
rabbidv |
|
| 30 |
29
|
mpteq2dv |
|
| 31 |
30
|
cbvmptv |
|
| 32 |
|
eleq1w |
|
| 33 |
32
|
rabbidv |
|
| 34 |
33
|
cbvmptv |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
eleq2d |
|
| 37 |
36
|
cbvrabv |
|
| 38 |
37
|
mpteq2i |
|
| 39 |
34 38
|
eqtri |
|
| 40 |
39
|
mpteq2i |
|
| 41 |
31 40
|
eqtri |
|
| 42 |
26 26 41
|
mpoeq123i |
|
| 43 |
1 25 42
|
3eqtri |
|
| 44 |
43 3 2
|
fsovd |
|
| 45 |
5 44
|
eqtrid |
|
| 46 |
|
fveq1 |
|
| 47 |
46
|
eleq2d |
|
| 48 |
47
|
rabbidv |
|
| 49 |
48
|
mpteq2dv |
|
| 50 |
14 16 45 49
|
fmptco |
|
| 51 |
|
eqidd |
|
| 52 |
|
eleq1w |
|
| 53 |
52
|
rabbidv |
|
| 54 |
53
|
adantl |
|
| 55 |
|
simpr |
|
| 56 |
|
rabexg |
|
| 57 |
2 56
|
syl |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
51 54 55 58
|
fvmptd |
|
| 60 |
59
|
eleq2d |
|
| 61 |
|
fveq2 |
|
| 62 |
61
|
eleq2d |
|
| 63 |
62
|
elrab3 |
|
| 64 |
63
|
ad2antlr |
|
| 65 |
60 64
|
bitrd |
|
| 66 |
65
|
rabbidva |
|
| 67 |
66
|
adantlr |
|
| 68 |
|
elmapi |
|
| 69 |
68
|
ad2antlr |
|
| 70 |
|
simpr |
|
| 71 |
69 70
|
ffvelcdmd |
|
| 72 |
71
|
elpwid |
|
| 73 |
|
sseqin2 |
|
| 74 |
72 73
|
sylib |
|
| 75 |
|
dfin5 |
|
| 76 |
74 75
|
eqtr3di |
|
| 77 |
67 76
|
eqtr4d |
|
| 78 |
77
|
mpteq2dva |
|
| 79 |
68
|
feqmptd |
|
| 80 |
79
|
adantl |
|
| 81 |
78 80
|
eqtr4d |
|
| 82 |
81
|
mpteq2dva |
|
| 83 |
|
mptresid |
|
| 84 |
83
|
eqcomi |
|
| 85 |
84
|
a1i |
|
| 86 |
50 82 85
|
3eqtrd |
|