Metamath Proof Explorer


Theorem fsumf1o

Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014)

Ref Expression
Hypotheses fsumf1o.1 k=GB=D
fsumf1o.2 φCFin
fsumf1o.3 φF:C1-1 ontoA
fsumf1o.4 φnCFn=G
fsumf1o.5 φkAB
Assertion fsumf1o φkAB=nCD

Proof

Step Hyp Ref Expression
1 fsumf1o.1 k=GB=D
2 fsumf1o.2 φCFin
3 fsumf1o.3 φF:C1-1 ontoA
4 fsumf1o.4 φnCFn=G
5 fsumf1o.5 φkAB
6 sum0 kB=0
7 f1oeq2 C=F:C1-1 ontoAF:1-1 ontoA
8 3 7 syl5ibcom φC=F:1-1 ontoA
9 8 imp φC=F:1-1 ontoA
10 f1ofo F:1-1 ontoAF:ontoA
11 fo00 F:ontoAF=A=
12 11 simprbi F:ontoAA=
13 9 10 12 3syl φC=A=
14 13 sumeq1d φC=kAB=kB
15 simpr φC=C=
16 15 sumeq1d φC=nCD=nD
17 sum0 nD=0
18 16 17 eqtrdi φC=nCD=0
19 6 14 18 3eqtr4a φC=kAB=nCD
20 19 ex φC=kAB=nCD
21 2fveq3 m=fnkABFm=kABFfn
22 simprl φCf:1C1-1 ontoCC
23 simprr φCf:1C1-1 ontoCf:1C1-1 ontoC
24 f1of F:C1-1 ontoAF:CA
25 3 24 syl φF:CA
26 25 ffvelcdmda φmCFmA
27 5 fmpttd φkAB:A
28 27 ffvelcdmda φFmAkABFm
29 26 28 syldan φmCkABFm
30 29 adantlr φCf:1C1-1 ontoCmCkABFm
31 f1oco F:C1-1 ontoAf:1C1-1 ontoCFf:1C1-1 ontoA
32 3 23 31 syl2an2r φCf:1C1-1 ontoCFf:1C1-1 ontoA
33 f1of Ff:1C1-1 ontoAFf:1CA
34 32 33 syl φCf:1C1-1 ontoCFf:1CA
35 fvco3 Ff:1CAn1CkABFfn=kABFfn
36 34 35 sylan φCf:1C1-1 ontoCn1CkABFfn=kABFfn
37 f1of f:1C1-1 ontoCf:1CC
38 37 ad2antll φCf:1C1-1 ontoCf:1CC
39 fvco3 f:1CCn1CFfn=Ffn
40 38 39 sylan φCf:1C1-1 ontoCn1CFfn=Ffn
41 40 fveq2d φCf:1C1-1 ontoCn1CkABFfn=kABFfn
42 36 41 eqtrd φCf:1C1-1 ontoCn1CkABFfn=kABFfn
43 21 22 23 30 42 fsum φCf:1C1-1 ontoCmCkABFm=seq1+kABFfC
44 25 ffvelcdmda φnCFnA
45 4 44 eqeltrrd φnCGA
46 eqid kAB=kAB
47 1 46 fvmpti GAkABG=ID
48 45 47 syl φnCkABG=ID
49 4 fveq2d φnCkABFn=kABG
50 eqid nCD=nCD
51 50 fvmpt2i nCnCDn=ID
52 51 adantl φnCnCDn=ID
53 48 49 52 3eqtr4rd φnCnCDn=kABFn
54 53 ralrimiva φnCnCDn=kABFn
55 nffvmpt1 _nnCDm
56 55 nfeq1 nnCDm=kABFm
57 fveq2 n=mnCDn=nCDm
58 2fveq3 n=mkABFn=kABFm
59 57 58 eqeq12d n=mnCDn=kABFnnCDm=kABFm
60 56 59 rspc mCnCnCDn=kABFnnCDm=kABFm
61 54 60 mpan9 φmCnCDm=kABFm
62 61 adantlr φCf:1C1-1 ontoCmCnCDm=kABFm
63 62 sumeq2dv φCf:1C1-1 ontoCmCnCDm=mCkABFm
64 fveq2 m=FfnkABm=kABFfn
65 27 adantr φCf:1C1-1 ontoCkAB:A
66 65 ffvelcdmda φCf:1C1-1 ontoCmAkABm
67 64 22 32 66 36 fsum φCf:1C1-1 ontoCmAkABm=seq1+kABFfC
68 43 63 67 3eqtr4rd φCf:1C1-1 ontoCmAkABm=mCnCDm
69 sumfc mAkABm=kAB
70 sumfc mCnCDm=nCD
71 68 69 70 3eqtr3g φCf:1C1-1 ontoCkAB=nCD
72 71 expr φCf:1C1-1 ontoCkAB=nCD
73 72 exlimdv φCff:1C1-1 ontoCkAB=nCD
74 73 expimpd φCff:1C1-1 ontoCkAB=nCD
75 fz1f1o CFinC=Cff:1C1-1 ontoC
76 2 75 syl φC=Cff:1C1-1 ontoC
77 20 74 76 mpjaod φkAB=nCD