Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
fsumf1o
Next ⟩
sumss
Metamath Proof Explorer
Ascii
Unicode
Theorem
fsumf1o
Description:
Re-index a finite sum using a bijection.
(Contributed by
Mario Carneiro
, 20-Apr-2014)
Ref
Expression
Hypotheses
fsumf1o.1
⊢
k
=
G
→
B
=
D
fsumf1o.2
⊢
φ
→
C
∈
Fin
fsumf1o.3
⊢
φ
→
F
:
C
⟶
1-1 onto
A
fsumf1o.4
⊢
φ
∧
n
∈
C
→
F
n
=
G
fsumf1o.5
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
Assertion
fsumf1o
⊢
φ
→
∑
k
∈
A
B
=
∑
n
∈
C
D
Proof
Step
Hyp
Ref
Expression
1
fsumf1o.1
⊢
k
=
G
→
B
=
D
2
fsumf1o.2
⊢
φ
→
C
∈
Fin
3
fsumf1o.3
⊢
φ
→
F
:
C
⟶
1-1 onto
A
4
fsumf1o.4
⊢
φ
∧
n
∈
C
→
F
n
=
G
5
fsumf1o.5
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
6
sum0
⊢
∑
k
∈
∅
B
=
0
7
f1oeq2
⊢
C
=
∅
→
F
:
C
⟶
1-1 onto
A
↔
F
:
∅
⟶
1-1 onto
A
8
3
7
syl5ibcom
⊢
φ
→
C
=
∅
→
F
:
∅
⟶
1-1 onto
A
9
8
imp
⊢
φ
∧
C
=
∅
→
F
:
∅
⟶
1-1 onto
A
10
f1ofo
⊢
F
:
∅
⟶
1-1 onto
A
→
F
:
∅
⟶
onto
A
11
fo00
⊢
F
:
∅
⟶
onto
A
↔
F
=
∅
∧
A
=
∅
12
11
simprbi
⊢
F
:
∅
⟶
onto
A
→
A
=
∅
13
9
10
12
3syl
⊢
φ
∧
C
=
∅
→
A
=
∅
14
13
sumeq1d
⊢
φ
∧
C
=
∅
→
∑
k
∈
A
B
=
∑
k
∈
∅
B
15
simpr
⊢
φ
∧
C
=
∅
→
C
=
∅
16
15
sumeq1d
⊢
φ
∧
C
=
∅
→
∑
n
∈
C
D
=
∑
n
∈
∅
D
17
sum0
⊢
∑
n
∈
∅
D
=
0
18
16
17
eqtrdi
⊢
φ
∧
C
=
∅
→
∑
n
∈
C
D
=
0
19
6
14
18
3eqtr4a
⊢
φ
∧
C
=
∅
→
∑
k
∈
A
B
=
∑
n
∈
C
D
20
19
ex
⊢
φ
→
C
=
∅
→
∑
k
∈
A
B
=
∑
n
∈
C
D
21
2fveq3
⊢
m
=
f
n
→
k
∈
A
⟼
B
F
m
=
k
∈
A
⟼
B
F
f
n
22
simprl
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
C
∈
ℕ
23
simprr
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
f
:
1
…
C
⟶
1-1 onto
C
24
f1of
⊢
F
:
C
⟶
1-1 onto
A
→
F
:
C
⟶
A
25
3
24
syl
⊢
φ
→
F
:
C
⟶
A
26
25
ffvelcdmda
⊢
φ
∧
m
∈
C
→
F
m
∈
A
27
5
fmpttd
⊢
φ
→
k
∈
A
⟼
B
:
A
⟶
ℂ
28
27
ffvelcdmda
⊢
φ
∧
F
m
∈
A
→
k
∈
A
⟼
B
F
m
∈
ℂ
29
26
28
syldan
⊢
φ
∧
m
∈
C
→
k
∈
A
⟼
B
F
m
∈
ℂ
30
29
adantlr
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
m
∈
C
→
k
∈
A
⟼
B
F
m
∈
ℂ
31
f1oco
⊢
F
:
C
⟶
1-1 onto
A
∧
f
:
1
…
C
⟶
1-1 onto
C
→
F
∘
f
:
1
…
C
⟶
1-1 onto
A
32
3
23
31
syl2an2r
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
F
∘
f
:
1
…
C
⟶
1-1 onto
A
33
f1of
⊢
F
∘
f
:
1
…
C
⟶
1-1 onto
A
→
F
∘
f
:
1
…
C
⟶
A
34
32
33
syl
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
F
∘
f
:
1
…
C
⟶
A
35
fvco3
⊢
F
∘
f
:
1
…
C
⟶
A
∧
n
∈
1
…
C
→
k
∈
A
⟼
B
∘
F
∘
f
n
=
k
∈
A
⟼
B
F
∘
f
n
36
34
35
sylan
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
n
∈
1
…
C
→
k
∈
A
⟼
B
∘
F
∘
f
n
=
k
∈
A
⟼
B
F
∘
f
n
37
f1of
⊢
f
:
1
…
C
⟶
1-1 onto
C
→
f
:
1
…
C
⟶
C
38
37
ad2antll
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
f
:
1
…
C
⟶
C
39
fvco3
⊢
f
:
1
…
C
⟶
C
∧
n
∈
1
…
C
→
F
∘
f
n
=
F
f
n
40
38
39
sylan
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
n
∈
1
…
C
→
F
∘
f
n
=
F
f
n
41
40
fveq2d
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
n
∈
1
…
C
→
k
∈
A
⟼
B
F
∘
f
n
=
k
∈
A
⟼
B
F
f
n
42
36
41
eqtrd
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
n
∈
1
…
C
→
k
∈
A
⟼
B
∘
F
∘
f
n
=
k
∈
A
⟼
B
F
f
n
43
21
22
23
30
42
fsum
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
∑
m
∈
C
k
∈
A
⟼
B
F
m
=
seq
1
+
k
∈
A
⟼
B
∘
F
∘
f
C
44
25
ffvelcdmda
⊢
φ
∧
n
∈
C
→
F
n
∈
A
45
4
44
eqeltrrd
⊢
φ
∧
n
∈
C
→
G
∈
A
46
eqid
⊢
k
∈
A
⟼
B
=
k
∈
A
⟼
B
47
1
46
fvmpti
⊢
G
∈
A
→
k
∈
A
⟼
B
G
=
I
D
48
45
47
syl
⊢
φ
∧
n
∈
C
→
k
∈
A
⟼
B
G
=
I
D
49
4
fveq2d
⊢
φ
∧
n
∈
C
→
k
∈
A
⟼
B
F
n
=
k
∈
A
⟼
B
G
50
eqid
⊢
n
∈
C
⟼
D
=
n
∈
C
⟼
D
51
50
fvmpt2i
⊢
n
∈
C
→
n
∈
C
⟼
D
n
=
I
D
52
51
adantl
⊢
φ
∧
n
∈
C
→
n
∈
C
⟼
D
n
=
I
D
53
48
49
52
3eqtr4rd
⊢
φ
∧
n
∈
C
→
n
∈
C
⟼
D
n
=
k
∈
A
⟼
B
F
n
54
53
ralrimiva
⊢
φ
→
∀
n
∈
C
n
∈
C
⟼
D
n
=
k
∈
A
⟼
B
F
n
55
nffvmpt1
⊢
Ⅎ
_
n
n
∈
C
⟼
D
m
56
55
nfeq1
⊢
Ⅎ
n
n
∈
C
⟼
D
m
=
k
∈
A
⟼
B
F
m
57
fveq2
⊢
n
=
m
→
n
∈
C
⟼
D
n
=
n
∈
C
⟼
D
m
58
2fveq3
⊢
n
=
m
→
k
∈
A
⟼
B
F
n
=
k
∈
A
⟼
B
F
m
59
57
58
eqeq12d
⊢
n
=
m
→
n
∈
C
⟼
D
n
=
k
∈
A
⟼
B
F
n
↔
n
∈
C
⟼
D
m
=
k
∈
A
⟼
B
F
m
60
56
59
rspc
⊢
m
∈
C
→
∀
n
∈
C
n
∈
C
⟼
D
n
=
k
∈
A
⟼
B
F
n
→
n
∈
C
⟼
D
m
=
k
∈
A
⟼
B
F
m
61
54
60
mpan9
⊢
φ
∧
m
∈
C
→
n
∈
C
⟼
D
m
=
k
∈
A
⟼
B
F
m
62
61
adantlr
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
m
∈
C
→
n
∈
C
⟼
D
m
=
k
∈
A
⟼
B
F
m
63
62
sumeq2dv
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
∑
m
∈
C
n
∈
C
⟼
D
m
=
∑
m
∈
C
k
∈
A
⟼
B
F
m
64
fveq2
⊢
m
=
F
∘
f
n
→
k
∈
A
⟼
B
m
=
k
∈
A
⟼
B
F
∘
f
n
65
27
adantr
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
k
∈
A
⟼
B
:
A
⟶
ℂ
66
65
ffvelcdmda
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
∧
m
∈
A
→
k
∈
A
⟼
B
m
∈
ℂ
67
64
22
32
66
36
fsum
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
∑
m
∈
A
k
∈
A
⟼
B
m
=
seq
1
+
k
∈
A
⟼
B
∘
F
∘
f
C
68
43
63
67
3eqtr4rd
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
∑
m
∈
A
k
∈
A
⟼
B
m
=
∑
m
∈
C
n
∈
C
⟼
D
m
69
sumfc
⊢
∑
m
∈
A
k
∈
A
⟼
B
m
=
∑
k
∈
A
B
70
sumfc
⊢
∑
m
∈
C
n
∈
C
⟼
D
m
=
∑
n
∈
C
D
71
68
69
70
3eqtr3g
⊢
φ
∧
C
∈
ℕ
∧
f
:
1
…
C
⟶
1-1 onto
C
→
∑
k
∈
A
B
=
∑
n
∈
C
D
72
71
expr
⊢
φ
∧
C
∈
ℕ
→
f
:
1
…
C
⟶
1-1 onto
C
→
∑
k
∈
A
B
=
∑
n
∈
C
D
73
72
exlimdv
⊢
φ
∧
C
∈
ℕ
→
∃
f
f
:
1
…
C
⟶
1-1 onto
C
→
∑
k
∈
A
B
=
∑
n
∈
C
D
74
73
expimpd
⊢
φ
→
C
∈
ℕ
∧
∃
f
f
:
1
…
C
⟶
1-1 onto
C
→
∑
k
∈
A
B
=
∑
n
∈
C
D
75
fz1f1o
⊢
C
∈
Fin
→
C
=
∅
∨
C
∈
ℕ
∧
∃
f
f
:
1
…
C
⟶
1-1 onto
C
76
2
75
syl
⊢
φ
→
C
=
∅
∨
C
∈
ℕ
∧
∃
f
f
:
1
…
C
⟶
1-1 onto
C
77
20
74
76
mpjaod
⊢
φ
→
∑
k
∈
A
B
=
∑
n
∈
C
D