Metamath Proof Explorer


Theorem fsumnncl

Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumnncl.an0 φA
fsumnncl.afi φAFin
fsumnncl.b φkAB
Assertion fsumnncl φkAB

Proof

Step Hyp Ref Expression
1 fsumnncl.an0 φA
2 fsumnncl.afi φAFin
3 fsumnncl.b φkAB
4 3 nnnn0d φkAB0
5 2 4 fsumnn0cl φkAB0
6 n0 AjjA
7 1 6 sylib φjjA
8 0red φjA0
9 nfv kφjA
10 nfcsb1v _kj/kB
11 10 nfel1 kj/kB
12 9 11 nfim kφjAj/kB
13 eleq1w k=jkAjA
14 13 anbi2d k=jφkAφjA
15 csbeq1a k=jB=j/kB
16 15 eleq1d k=jBj/kB
17 14 16 imbi12d k=jφkABφjAj/kB
18 12 17 3 chvarfv φjAj/kB
19 18 nnred φjAj/kB
20 8 19 readdcld φjA0+j/kB
21 diffi AFinAjFin
22 2 21 syl φAjFin
23 eldifi kAjkA
24 23 adantl φkAjkA
25 24 4 syldan φkAjB0
26 22 25 fsumnn0cl φkAjB0
27 26 nn0red φkAjB
28 27 adantr φjAkAjB
29 28 19 readdcld φjAkAjB+j/kB
30 18 nnrpd φjAj/kB+
31 8 30 ltaddrpd φjA0<0+j/kB
32 26 nn0ge0d φ0kAjB
33 32 adantr φjA0kAjB
34 8 28 19 33 leadd1dd φjA0+j/kBkAjB+j/kB
35 8 20 29 31 34 ltletrd φjA0<kAjB+j/kB
36 difsnid jAAjj=A
37 36 adantl φjAAjj=A
38 37 eqcomd φjAA=Ajj
39 38 sumeq1d φjAkAB=kAjjB
40 22 adantr φjAAjFin
41 simpr φjAjA
42 neldifsnd φjA¬jAj
43 simpl φkAjφ
44 43 24 3 syl2anc φkAjB
45 44 nncnd φkAjB
46 45 adantlr φjAkAjB
47 nnsscn
48 47 a1i φjA
49 48 18 sseldd φjAj/kB
50 9 10 40 41 42 46 15 49 fsumsplitsn φjAkAjjB=kAjB+j/kB
51 39 50 eqtr2d φjAkAjB+j/kB=kAB
52 35 51 breqtrd φjA0<kAB
53 52 ex φjA0<kAB
54 53 exlimdv φjjA0<kAB
55 7 54 mpd φ0<kAB
56 5 55 jca φkAB00<kAB
57 elnnnn0b kABkAB00<kAB
58 56 57 sylibr φkAB