Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumnncl.an0 | |
|
fsumnncl.afi | |
||
fsumnncl.b | |
||
Assertion | fsumnncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumnncl.an0 | |
|
2 | fsumnncl.afi | |
|
3 | fsumnncl.b | |
|
4 | 3 | nnnn0d | |
5 | 2 4 | fsumnn0cl | |
6 | n0 | |
|
7 | 1 6 | sylib | |
8 | 0red | |
|
9 | nfv | |
|
10 | nfcsb1v | |
|
11 | 10 | nfel1 | |
12 | 9 11 | nfim | |
13 | eleq1w | |
|
14 | 13 | anbi2d | |
15 | csbeq1a | |
|
16 | 15 | eleq1d | |
17 | 14 16 | imbi12d | |
18 | 12 17 3 | chvarfv | |
19 | 18 | nnred | |
20 | 8 19 | readdcld | |
21 | diffi | |
|
22 | 2 21 | syl | |
23 | eldifi | |
|
24 | 23 | adantl | |
25 | 24 4 | syldan | |
26 | 22 25 | fsumnn0cl | |
27 | 26 | nn0red | |
28 | 27 | adantr | |
29 | 28 19 | readdcld | |
30 | 18 | nnrpd | |
31 | 8 30 | ltaddrpd | |
32 | 26 | nn0ge0d | |
33 | 32 | adantr | |
34 | 8 28 19 33 | leadd1dd | |
35 | 8 20 29 31 34 | ltletrd | |
36 | difsnid | |
|
37 | 36 | adantl | |
38 | 37 | eqcomd | |
39 | 38 | sumeq1d | |
40 | 22 | adantr | |
41 | simpr | |
|
42 | neldifsnd | |
|
43 | simpl | |
|
44 | 43 24 3 | syl2anc | |
45 | 44 | nncnd | |
46 | 45 | adantlr | |
47 | nnsscn | |
|
48 | 47 | a1i | |
49 | 48 18 | sseldd | |
50 | 9 10 40 41 42 46 15 49 | fsumsplitsn | |
51 | 39 50 | eqtr2d | |
52 | 35 51 | breqtrd | |
53 | 52 | ex | |
54 | 53 | exlimdv | |
55 | 7 54 | mpd | |
56 | 5 55 | jca | |
57 | elnnnn0b | |
|
58 | 56 57 | sylibr | |