| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumre.1 |  | 
						
							| 2 |  | fsumre.2 |  | 
						
							| 3 |  | fsumrelem.3 |  | 
						
							| 4 |  | fsumrelem.4 |  | 
						
							| 5 |  | 0cn |  | 
						
							| 6 | 3 | ffvelcdmi |  | 
						
							| 7 | 5 6 | ax-mp |  | 
						
							| 8 | 7 | addridi |  | 
						
							| 9 |  | fvoveq1 |  | 
						
							| 10 |  | fveq2 |  | 
						
							| 11 | 10 | oveq1d |  | 
						
							| 12 | 9 11 | eqeq12d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 |  | 00id |  | 
						
							| 15 | 13 14 | eqtrdi |  | 
						
							| 16 | 15 | fveq2d |  | 
						
							| 17 |  | fveq2 |  | 
						
							| 18 | 17 | oveq2d |  | 
						
							| 19 | 16 18 | eqeq12d |  | 
						
							| 20 | 12 19 4 | vtocl2ga |  | 
						
							| 21 | 5 5 20 | mp2an |  | 
						
							| 22 | 8 21 | eqtr2i |  | 
						
							| 23 | 7 7 5 | addcani |  | 
						
							| 24 | 22 23 | mpbi |  | 
						
							| 25 |  | sumeq1 |  | 
						
							| 26 |  | sum0 |  | 
						
							| 27 | 25 26 | eqtrdi |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 |  | sumeq1 |  | 
						
							| 30 |  | sum0 |  | 
						
							| 31 | 29 30 | eqtrdi |  | 
						
							| 32 | 24 28 31 | 3eqtr4a |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 |  | addcl |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 2 | fmpttd |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | simprr |  | 
						
							| 39 |  | f1of |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 |  | fco |  | 
						
							| 42 | 37 40 41 | syl2anc |  | 
						
							| 43 | 42 | ffvelcdmda |  | 
						
							| 44 |  | simprl |  | 
						
							| 45 |  | nnuz |  | 
						
							| 46 | 44 45 | eleqtrdi |  | 
						
							| 47 | 4 | adantl |  | 
						
							| 48 | 40 | ffvelcdmda |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 50 | fvmpt2 |  | 
						
							| 52 | 49 2 51 | syl2anc |  | 
						
							| 53 | 52 | fveq2d |  | 
						
							| 54 |  | fvex |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 55 | fvmpt2 |  | 
						
							| 57 | 49 54 56 | sylancl |  | 
						
							| 58 | 53 57 | eqtr4d |  | 
						
							| 59 | 58 | ralrimiva |  | 
						
							| 60 | 59 | ad2antrr |  | 
						
							| 61 |  | nfcv |  | 
						
							| 62 |  | nffvmpt1 |  | 
						
							| 63 | 61 62 | nffv |  | 
						
							| 64 |  | nffvmpt1 |  | 
						
							| 65 | 63 64 | nfeq |  | 
						
							| 66 |  | 2fveq3 |  | 
						
							| 67 |  | fveq2 |  | 
						
							| 68 | 66 67 | eqeq12d |  | 
						
							| 69 | 65 68 | rspc |  | 
						
							| 70 | 48 60 69 | sylc |  | 
						
							| 71 |  | fvco3 |  | 
						
							| 72 | 40 71 | sylan |  | 
						
							| 73 | 72 | fveq2d |  | 
						
							| 74 |  | fvco3 |  | 
						
							| 75 | 40 74 | sylan |  | 
						
							| 76 | 70 73 75 | 3eqtr4d |  | 
						
							| 77 | 35 43 46 47 76 | seqhomo |  | 
						
							| 78 |  | fveq2 |  | 
						
							| 79 | 37 | ffvelcdmda |  | 
						
							| 80 | 78 44 38 79 72 | fsum |  | 
						
							| 81 | 80 | fveq2d |  | 
						
							| 82 |  | fveq2 |  | 
						
							| 83 | 3 | ffvelcdmi |  | 
						
							| 84 | 2 83 | syl |  | 
						
							| 85 | 84 | fmpttd |  | 
						
							| 86 | 85 | adantr |  | 
						
							| 87 | 86 | ffvelcdmda |  | 
						
							| 88 | 82 44 38 87 75 | fsum |  | 
						
							| 89 | 77 81 88 | 3eqtr4d |  | 
						
							| 90 |  | sumfc |  | 
						
							| 91 | 90 | fveq2i |  | 
						
							| 92 |  | sumfc |  | 
						
							| 93 | 89 91 92 | 3eqtr3g |  | 
						
							| 94 | 93 | expr |  | 
						
							| 95 | 94 | exlimdv |  | 
						
							| 96 | 95 | expimpd |  | 
						
							| 97 |  | fz1f1o |  | 
						
							| 98 | 1 97 | syl |  | 
						
							| 99 | 33 96 98 | mpjaod |  |