Metamath Proof Explorer


Theorem fsumrelem

Description: Lemma for fsumre , fsumim , and fsumcj . (Contributed by Mario Carneiro, 25-Jul-2014) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses fsumre.1 φAFin
fsumre.2 φkAB
fsumrelem.3 F:
fsumrelem.4 xyFx+y=Fx+Fy
Assertion fsumrelem φFkAB=kAFB

Proof

Step Hyp Ref Expression
1 fsumre.1 φAFin
2 fsumre.2 φkAB
3 fsumrelem.3 F:
4 fsumrelem.4 xyFx+y=Fx+Fy
5 0cn 0
6 3 ffvelcdmi 0F0
7 5 6 ax-mp F0
8 7 addridi F0+0=F0
9 fvoveq1 x=0Fx+y=F0+y
10 fveq2 x=0Fx=F0
11 10 oveq1d x=0Fx+Fy=F0+Fy
12 9 11 eqeq12d x=0Fx+y=Fx+FyF0+y=F0+Fy
13 oveq2 y=00+y=0+0
14 00id 0+0=0
15 13 14 eqtrdi y=00+y=0
16 15 fveq2d y=0F0+y=F0
17 fveq2 y=0Fy=F0
18 17 oveq2d y=0F0+Fy=F0+F0
19 16 18 eqeq12d y=0F0+y=F0+FyF0=F0+F0
20 12 19 4 vtocl2ga 00F0=F0+F0
21 5 5 20 mp2an F0=F0+F0
22 8 21 eqtr2i F0+F0=F0+0
23 7 7 5 addcani F0+F0=F0+0F0=0
24 22 23 mpbi F0=0
25 sumeq1 A=kAB=kB
26 sum0 kB=0
27 25 26 eqtrdi A=kAB=0
28 27 fveq2d A=FkAB=F0
29 sumeq1 A=kAFB=kFB
30 sum0 kFB=0
31 29 30 eqtrdi A=kAFB=0
32 24 28 31 3eqtr4a A=FkAB=kAFB
33 32 a1i φA=FkAB=kAFB
34 addcl xyx+y
35 34 adantl φAf:1A1-1 ontoAxyx+y
36 2 fmpttd φkAB:A
37 36 adantr φAf:1A1-1 ontoAkAB:A
38 simprr φAf:1A1-1 ontoAf:1A1-1 ontoA
39 f1of f:1A1-1 ontoAf:1AA
40 38 39 syl φAf:1A1-1 ontoAf:1AA
41 fco kAB:Af:1AAkABf:1A
42 37 40 41 syl2anc φAf:1A1-1 ontoAkABf:1A
43 42 ffvelcdmda φAf:1A1-1 ontoAx1AkABfx
44 simprl φAf:1A1-1 ontoAA
45 nnuz =1
46 44 45 eleqtrdi φAf:1A1-1 ontoAA1
47 4 adantl φAf:1A1-1 ontoAxyFx+y=Fx+Fy
48 40 ffvelcdmda φAf:1A1-1 ontoAx1AfxA
49 simpr φkAkA
50 eqid kAB=kAB
51 50 fvmpt2 kABkABk=B
52 49 2 51 syl2anc φkAkABk=B
53 52 fveq2d φkAFkABk=FB
54 fvex FBV
55 eqid kAFB=kAFB
56 55 fvmpt2 kAFBVkAFBk=FB
57 49 54 56 sylancl φkAkAFBk=FB
58 53 57 eqtr4d φkAFkABk=kAFBk
59 58 ralrimiva φkAFkABk=kAFBk
60 59 ad2antrr φAf:1A1-1 ontoAx1AkAFkABk=kAFBk
61 nfcv _kF
62 nffvmpt1 _kkABfx
63 61 62 nffv _kFkABfx
64 nffvmpt1 _kkAFBfx
65 63 64 nfeq kFkABfx=kAFBfx
66 2fveq3 k=fxFkABk=FkABfx
67 fveq2 k=fxkAFBk=kAFBfx
68 66 67 eqeq12d k=fxFkABk=kAFBkFkABfx=kAFBfx
69 65 68 rspc fxAkAFkABk=kAFBkFkABfx=kAFBfx
70 48 60 69 sylc φAf:1A1-1 ontoAx1AFkABfx=kAFBfx
71 fvco3 f:1AAx1AkABfx=kABfx
72 40 71 sylan φAf:1A1-1 ontoAx1AkABfx=kABfx
73 72 fveq2d φAf:1A1-1 ontoAx1AFkABfx=FkABfx
74 fvco3 f:1AAx1AkAFBfx=kAFBfx
75 40 74 sylan φAf:1A1-1 ontoAx1AkAFBfx=kAFBfx
76 70 73 75 3eqtr4d φAf:1A1-1 ontoAx1AFkABfx=kAFBfx
77 35 43 46 47 76 seqhomo φAf:1A1-1 ontoAFseq1+kABfA=seq1+kAFBfA
78 fveq2 m=fxkABm=kABfx
79 37 ffvelcdmda φAf:1A1-1 ontoAmAkABm
80 78 44 38 79 72 fsum φAf:1A1-1 ontoAmAkABm=seq1+kABfA
81 80 fveq2d φAf:1A1-1 ontoAFmAkABm=Fseq1+kABfA
82 fveq2 m=fxkAFBm=kAFBfx
83 3 ffvelcdmi BFB
84 2 83 syl φkAFB
85 84 fmpttd φkAFB:A
86 85 adantr φAf:1A1-1 ontoAkAFB:A
87 86 ffvelcdmda φAf:1A1-1 ontoAmAkAFBm
88 82 44 38 87 75 fsum φAf:1A1-1 ontoAmAkAFBm=seq1+kAFBfA
89 77 81 88 3eqtr4d φAf:1A1-1 ontoAFmAkABm=mAkAFBm
90 sumfc mAkABm=kAB
91 90 fveq2i FmAkABm=FkAB
92 sumfc mAkAFBm=kAFB
93 89 91 92 3eqtr3g φAf:1A1-1 ontoAFkAB=kAFB
94 93 expr φAf:1A1-1 ontoAFkAB=kAFB
95 94 exlimdv φAff:1A1-1 ontoAFkAB=kAFB
96 95 expimpd φAff:1A1-1 ontoAFkAB=kAFB
97 fz1f1o AFinA=Aff:1A1-1 ontoA
98 1 97 syl φA=Aff:1A1-1 ontoA
99 33 96 98 mpjaod φFkAB=kAFB