Metamath Proof Explorer


Theorem fsumsermpt

Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fsumsermpt.m φM
fsumsermpt.z Z=M
fsumsermpt.a φkZA
fsumsermpt.f F=nZk=MnA
fsumsermpt.g G=seqM+kZA
Assertion fsumsermpt φF=G

Proof

Step Hyp Ref Expression
1 fsumsermpt.m φM
2 fsumsermpt.z Z=M
3 fsumsermpt.a φkZA
4 fsumsermpt.f F=nZk=MnA
5 fsumsermpt.g G=seqM+kZA
6 fzfid φMmFin
7 simpl φkMmφ
8 elfzuz kMmkM
9 8 2 eleqtrrdi kMmkZ
10 9 adantl φkMmkZ
11 7 10 3 syl2anc φkMmA
12 6 11 fsumcl φk=MmA
13 12 adantr φmZk=MmA
14 13 ralrimiva φmZk=MmA
15 oveq2 n=mMn=Mm
16 15 sumeq1d n=mk=MnA=k=MmA
17 16 cbvmptv nZk=MnA=mZk=MmA
18 4 17 eqtri F=mZk=MmA
19 18 fnmpt mZk=MmAFFnZ
20 14 19 syl φFFnZ
21 simpr φjZjZ
22 nfv kφjZ
23 nfcv _kj
24 23 nfcsb1 _kj/kA
25 24 nfel1 kj/kA
26 22 25 nfim kφjZj/kA
27 eleq1w k=jkZjZ
28 27 anbi2d k=jφkZφjZ
29 csbeq1a k=jA=j/kA
30 29 eleq1d k=jAj/kA
31 28 30 imbi12d k=jφkZAφjZj/kA
32 26 31 3 chvarfv φjZj/kA
33 eqid kZA=kZA
34 23 24 29 33 fvmptf jZj/kAkZAj=j/kA
35 21 32 34 syl2anc φjZkZAj=j/kA
36 35 32 eqeltrd φjZkZAj
37 addcl jxj+x
38 37 adantl φjxj+x
39 2 1 36 38 seqf φseqM+kZA:Z
40 39 ffnd φseqM+kZAFnZ
41 5 a1i φG=seqM+kZA
42 41 fneq1d φGFnZseqM+kZAFnZ
43 40 42 mpbird φGFnZ
44 simpr φmZmZ
45 18 fvmpt2 mZk=MmAFm=k=MmA
46 44 13 45 syl2anc φmZFm=k=MmA
47 nfcv _jMm
48 nfcv _kMm
49 nfcv _jA
50 29 47 48 49 24 cbvsum k=MmA=j=Mmj/kA
51 50 a1i φmZk=MmA=j=Mmj/kA
52 46 51 eqtrd φmZFm=j=Mmj/kA
53 simpl φjMmφ
54 elfzuz jMmjM
55 54 2 eleqtrrdi jMmjZ
56 55 adantl φjMmjZ
57 53 56 35 syl2anc φjMmkZAj=j/kA
58 57 adantlr φmZjMmkZAj=j/kA
59 id mZmZ
60 59 2 eleqtrdi mZmM
61 60 adantl φmZmM
62 53 56 32 syl2anc φjMmj/kA
63 62 adantlr φmZjMmj/kA
64 58 61 63 fsumser φmZj=Mmj/kA=seqM+kZAm
65 5 fveq1i Gm=seqM+kZAm
66 65 eqcomi seqM+kZAm=Gm
67 66 a1i φmZseqM+kZAm=Gm
68 52 64 67 3eqtrd φmZFm=Gm
69 20 43 68 eqfnfvd φF=G