Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumsermpt.m | |
|
fsumsermpt.z | |
||
fsumsermpt.a | |
||
fsumsermpt.f | |
||
fsumsermpt.g | |
||
Assertion | fsumsermpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsermpt.m | |
|
2 | fsumsermpt.z | |
|
3 | fsumsermpt.a | |
|
4 | fsumsermpt.f | |
|
5 | fsumsermpt.g | |
|
6 | fzfid | |
|
7 | simpl | |
|
8 | elfzuz | |
|
9 | 8 2 | eleqtrrdi | |
10 | 9 | adantl | |
11 | 7 10 3 | syl2anc | |
12 | 6 11 | fsumcl | |
13 | 12 | adantr | |
14 | 13 | ralrimiva | |
15 | oveq2 | |
|
16 | 15 | sumeq1d | |
17 | 16 | cbvmptv | |
18 | 4 17 | eqtri | |
19 | 18 | fnmpt | |
20 | 14 19 | syl | |
21 | simpr | |
|
22 | nfv | |
|
23 | nfcv | |
|
24 | 23 | nfcsb1 | |
25 | 24 | nfel1 | |
26 | 22 25 | nfim | |
27 | eleq1w | |
|
28 | 27 | anbi2d | |
29 | csbeq1a | |
|
30 | 29 | eleq1d | |
31 | 28 30 | imbi12d | |
32 | 26 31 3 | chvarfv | |
33 | eqid | |
|
34 | 23 24 29 33 | fvmptf | |
35 | 21 32 34 | syl2anc | |
36 | 35 32 | eqeltrd | |
37 | addcl | |
|
38 | 37 | adantl | |
39 | 2 1 36 38 | seqf | |
40 | 39 | ffnd | |
41 | 5 | a1i | |
42 | 41 | fneq1d | |
43 | 40 42 | mpbird | |
44 | simpr | |
|
45 | 18 | fvmpt2 | |
46 | 44 13 45 | syl2anc | |
47 | nfcv | |
|
48 | nfcv | |
|
49 | nfcv | |
|
50 | 29 47 48 49 24 | cbvsum | |
51 | 50 | a1i | |
52 | 46 51 | eqtrd | |
53 | simpl | |
|
54 | elfzuz | |
|
55 | 54 2 | eleqtrrdi | |
56 | 55 | adantl | |
57 | 53 56 35 | syl2anc | |
58 | 57 | adantlr | |
59 | id | |
|
60 | 59 2 | eleqtrdi | |
61 | 60 | adantl | |
62 | 53 56 32 | syl2anc | |
63 | 62 | adantlr | |
64 | 58 61 63 | fsumser | |
65 | 5 | fveq1i | |
66 | 65 | eqcomi | |
67 | 66 | a1i | |
68 | 52 64 67 | 3eqtrd | |
69 | 20 43 68 | eqfnfvd | |