| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsermpt.m |
|
| 2 |
|
fsumsermpt.z |
|
| 3 |
|
fsumsermpt.a |
|
| 4 |
|
fsumsermpt.f |
|
| 5 |
|
fsumsermpt.g |
|
| 6 |
|
fzfid |
|
| 7 |
|
simpl |
|
| 8 |
|
elfzuz |
|
| 9 |
8 2
|
eleqtrrdi |
|
| 10 |
9
|
adantl |
|
| 11 |
7 10 3
|
syl2anc |
|
| 12 |
6 11
|
fsumcl |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
ralrimiva |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
sumeq1d |
|
| 17 |
16
|
cbvmptv |
|
| 18 |
4 17
|
eqtri |
|
| 19 |
18
|
fnmpt |
|
| 20 |
14 19
|
syl |
|
| 21 |
|
simpr |
|
| 22 |
|
nfv |
|
| 23 |
|
nfcv |
|
| 24 |
23
|
nfcsb1 |
|
| 25 |
24
|
nfel1 |
|
| 26 |
22 25
|
nfim |
|
| 27 |
|
eleq1w |
|
| 28 |
27
|
anbi2d |
|
| 29 |
|
csbeq1a |
|
| 30 |
29
|
eleq1d |
|
| 31 |
28 30
|
imbi12d |
|
| 32 |
26 31 3
|
chvarfv |
|
| 33 |
|
eqid |
|
| 34 |
23 24 29 33
|
fvmptf |
|
| 35 |
21 32 34
|
syl2anc |
|
| 36 |
35 32
|
eqeltrd |
|
| 37 |
|
addcl |
|
| 38 |
37
|
adantl |
|
| 39 |
2 1 36 38
|
seqf |
|
| 40 |
39
|
ffnd |
|
| 41 |
5
|
a1i |
|
| 42 |
41
|
fneq1d |
|
| 43 |
40 42
|
mpbird |
|
| 44 |
|
simpr |
|
| 45 |
18
|
fvmpt2 |
|
| 46 |
44 13 45
|
syl2anc |
|
| 47 |
|
nfcv |
|
| 48 |
29 47 24
|
cbvsum |
|
| 49 |
48
|
a1i |
|
| 50 |
46 49
|
eqtrd |
|
| 51 |
|
simpl |
|
| 52 |
|
elfzuz |
|
| 53 |
52 2
|
eleqtrrdi |
|
| 54 |
53
|
adantl |
|
| 55 |
51 54 35
|
syl2anc |
|
| 56 |
55
|
adantlr |
|
| 57 |
|
id |
|
| 58 |
57 2
|
eleqtrdi |
|
| 59 |
58
|
adantl |
|
| 60 |
51 54 32
|
syl2anc |
|
| 61 |
60
|
adantlr |
|
| 62 |
56 59 61
|
fsumser |
|
| 63 |
5
|
fveq1i |
|
| 64 |
63
|
eqcomi |
|
| 65 |
64
|
a1i |
|
| 66 |
50 62 65
|
3eqtrd |
|
| 67 |
20 43 66
|
eqfnfvd |
|