Metamath Proof Explorer


Theorem gamcvg

Description: The pointwise exponential of the series G converges to _G ( A ) x. A . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g G=mAlogm+1mlogAm+1
lgamcvg.a φA
Assertion gamcvg φexpseq1+GΓAA

Proof

Step Hyp Ref Expression
1 lgamcvg.g G=mAlogm+1mlogAm+1
2 lgamcvg.a φA
3 nnuz =1
4 1zzd φ1
5 efcn exp:cn
6 5 a1i φexp:cn
7 2 eldifad φA
8 7 adantr φmA
9 simpr φmm
10 9 peano2nnd φmm+1
11 10 nnrpd φmm+1+
12 9 nnrpd φmm+
13 11 12 rpdivcld φmm+1m+
14 13 relogcld φmlogm+1m
15 14 recnd φmlogm+1m
16 8 15 mulcld φmAlogm+1m
17 9 nncnd φmm
18 9 nnne0d φmm0
19 8 17 18 divcld φmAm
20 1cnd φm1
21 19 20 addcld φmAm+1
22 2 adantr φmA
23 22 9 dmgmdivn0 φmAm+10
24 21 23 logcld φmlogAm+1
25 16 24 subcld φmAlogm+1mlogAm+1
26 25 1 fmptd φG:
27 26 ffvelcdmda φnGn
28 3 4 27 serf φseq1+G:
29 1 2 lgamcvg φseq1+GlogΓA+logA
30 lgamcl AlogΓA
31 2 30 syl φlogΓA
32 2 dmgmn0 φA0
33 7 32 logcld φlogA
34 31 33 addcld φlogΓA+logA
35 3 4 6 28 29 34 climcncf φexpseq1+GelogΓA+logA
36 efadd logΓAlogAelogΓA+logA=elogΓAelogA
37 31 33 36 syl2anc φelogΓA+logA=elogΓAelogA
38 eflgam AelogΓA=ΓA
39 2 38 syl φelogΓA=ΓA
40 eflog AA0elogA=A
41 7 32 40 syl2anc φelogA=A
42 39 41 oveq12d φelogΓAelogA=ΓAA
43 37 42 eqtrd φelogΓA+logA=ΓAA
44 35 43 breqtrd φexpseq1+GΓAA