Metamath Proof Explorer


Theorem gg-icchmeo

Description: The natural bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-icchmeo.j J=TopOpenfld
gg-icchmeo.f F=x01xB+1xA
Assertion gg-icchmeo ABA<BFIIHomeoJ𝑡AB

Proof

Step Hyp Ref Expression
1 gg-icchmeo.j J=TopOpenfld
2 gg-icchmeo.f F=x01xB+1xA
3 iitopon IITopOn01
4 3 a1i ABA<BIITopOn01
5 1 dfii3 II=J𝑡01
6 5 eqcomi J𝑡01=II
7 6 oveq2i IICnJ𝑡01=IICnII
8 1 cnfldtop JTop
9 cnrest2r JTopIICnJ𝑡01IICnJ
10 8 9 ax-mp IICnJ𝑡01IICnJ
11 7 10 eqsstrri IICnIIIICnJ
12 4 cnmptid ABA<Bx01xIICnII
13 11 12 sselid ABA<Bx01xIICnJ
14 1 cnfldtopon JTopOn
15 14 a1i ABA<BJTopOn
16 simp2 ABA<BB
17 16 recnd ABA<BB
18 4 15 17 cnmptc ABA<Bx01BIICnJ
19 1 mpomulcn u,vuvJ×tJCnJ
20 19 a1i ABA<Bu,vuvJ×tJCnJ
21 oveq12 u=xv=Buv=xB
22 4 13 18 15 15 20 21 cnmpt12 ABA<Bx01xBIICnJ
23 1cnd ABA<B1
24 4 15 23 cnmptc ABA<Bx011IICnJ
25 1 subcn J×tJCnJ
26 25 a1i ABA<BJ×tJCnJ
27 4 24 13 26 cnmpt12f ABA<Bx011xIICnJ
28 simp1 ABA<BA
29 28 recnd ABA<BA
30 4 15 29 cnmptc ABA<Bx01AIICnJ
31 oveq12 u=1xv=Auv=1xA
32 4 27 30 15 15 20 31 cnmpt12 ABA<Bx011xAIICnJ
33 1 addcn +J×tJCnJ
34 33 a1i ABA<B+J×tJCnJ
35 4 22 32 34 cnmpt12f ABA<Bx01xB+1xAIICnJ
36 2 35 eqeltrid ABA<BFIICnJ
37 2 iccf1o ABA<BF:011-1 ontoABF-1=yAByABA
38 37 simpld ABA<BF:011-1 ontoAB
39 f1of F:011-1 ontoABF:01AB
40 frn F:01ABranFAB
41 38 39 40 3syl ABA<BranFAB
42 iccssre ABAB
43 42 3adant3 ABA<BAB
44 ax-resscn
45 43 44 sstrdi ABA<BAB
46 cnrest2 JTopOnranFABABFIICnJFIICnJ𝑡AB
47 14 41 45 46 mp3an2i ABA<BFIICnJFIICnJ𝑡AB
48 36 47 mpbid ABA<BFIICnJ𝑡AB
49 37 simprd ABA<BF-1=yAByABA
50 resttopon JTopOnABJ𝑡ABTopOnAB
51 14 45 50 sylancr ABA<BJ𝑡ABTopOnAB
52 cnrest2r JTopJ𝑡ABCnJ𝑡ABJ𝑡ABCnJ
53 8 52 ax-mp J𝑡ABCnJ𝑡ABJ𝑡ABCnJ
54 51 cnmptid ABA<ByAByJ𝑡ABCnJ𝑡AB
55 53 54 sselid ABA<ByAByJ𝑡ABCnJ
56 51 15 29 cnmptc ABA<ByABAJ𝑡ABCnJ
57 51 55 56 26 cnmpt12f ABA<ByAByAJ𝑡ABCnJ
58 difrp ABA<BBA+
59 58 biimp3a ABA<BBA+
60 59 rpcnd ABA<BBA
61 59 rpne0d ABA<BBA0
62 1 gg-divccn BABA0xxBAJCnJ
63 60 61 62 syl2anc ABA<BxxBAJCnJ
64 oveq1 x=yAxBA=yABA
65 51 57 15 63 64 cnmpt11 ABA<ByAByABAJ𝑡ABCnJ
66 49 65 eqeltrd ABA<BF-1J𝑡ABCnJ
67 dfdm4 domF=ranF-1
68 67 eqimss2i ranF-1domF
69 f1odm F:011-1 ontoABdomF=01
70 38 69 syl ABA<BdomF=01
71 68 70 sseqtrid ABA<BranF-101
72 unitssre 01
73 72 a1i ABA<B01
74 73 44 sstrdi ABA<B01
75 cnrest2 JTopOnranF-10101F-1J𝑡ABCnJF-1J𝑡ABCnJ𝑡01
76 14 71 74 75 mp3an2i ABA<BF-1J𝑡ABCnJF-1J𝑡ABCnJ𝑡01
77 66 76 mpbid ABA<BF-1J𝑡ABCnJ𝑡01
78 5 oveq2i J𝑡ABCnII=J𝑡ABCnJ𝑡01
79 77 78 eleqtrrdi ABA<BF-1J𝑡ABCnII
80 ishmeo FIIHomeoJ𝑡ABFIICnJ𝑡ABF-1J𝑡ABCnII
81 48 79 80 sylanbrc ABA<BFIIHomeoJ𝑡AB